[image: image1.jpg](6 | Laboratory 7

Lesson 7-2: Multi-Way Branching

Name: Jered McClure___________________________ Date: 25 Nov 2011_____________

Section: ITEC-1030-1 ___

Exercise 1: As Prelab Exercise 5 demonstrated, application Switches is not very robust. Add the code necessary to allow the program to work properly with both lowercase and uppercase versions of all the input letters. Run your program with the same data, but key the letters as lowercase.

 inputString = inputString.toUpperCase();

Output:

Type A for addition followed by two integers

Type S for subtraction followed by two integers

Type M for multiplication followed by two integers

Type D for division followed by two integers

Type Q to finish

a 5 -7

5 + -7 is -2

a -5 -8

-5 + -8 is -13

s 7 7

7 - 7 is 0

s 8 -8

8 - -8 is 16

m 8 -8

8 * -8 is -64

d 8 8

8 / 8 is 1

q

Exercise 2: Application Switches is still not very robust. Add a default case to the switch statement that prints an error message that states that the calculation was not preformed. Test your program with the same data set, but add several letters that are not correct. Compile and run your program. Show your output.

 if((code == 'A') || (code == 'S') || (code == 'M') || (code == 'D')){

 inputString = inputString.substring(1, inputString.length());

 Scanner string = new Scanner(inputString);

 if(string.hasNextInt()){

 one = string.nextInt();

 if(string.hasNextInt()){

 two = string.nextInt();

 }else{

 System.out.println("Please only type two numbers (e.g. 2 3 or -2 3" +

 " or 2 -3)");

 continue;

 }

 }else{

 System.out.println("Please only type two numbers (e.g. 2 3 or -2 3 or"

 + " 2 -3)");

 continue;

 }

 default:

 System.out.println("Please type A, S, M, D, or Q to stop.");

break;

Output:

Type A for addition followed by two integers

Type S for subtraction followed by two integers

Type M for multiplication followed by two integers

Type D for division followed by two integers

Type Q to finish

bdf

Please type A, S, M, D, or Q to stop.

a123

Please only type two numbers (e.g. 2 3 or -2 3 or 2 -3)

q

Full Source Code:

import java.util.Scanner;
/**
 * Application Switches demonstrates the use of the switch
 * statement via mathematical operations.
 */
public class Switches{
 public static void main(String[] args){
 char code;//Variable to store user choice
 int answer;//Variable to store output
 int one = 0;//the first numerical value of the equation
 int two = 0;//the second numerical value of the equation
 String inputString;//variable to store input
 boolean quit = false;//Application control switch
 //Instantiate and declare the scanner object "inLine"
 Scanner inLine = new Scanner(System.in);
 //Explain how input works
 System.out.println("Type A for addition followed by two integers" +
 "\nType S for subtraction followed by two integers" +
 "\nType M for multiplication followed by two integers" +
 "\nType D for division followed by two integers" +
 "\nType Q to finish");
 do {//begin doWhile loop

inputString = inLine.nextLine();//gather input from user

inputString = inputString.toUpperCase();//set that input to upper case
 if(!(inputString.isEmpty())){//ensure that the input is not null

code = inputString.charAt(0);//set where the control switch is located
 //in the user's input
 }else{//if the input is null

 //Reprint directions

 System.out.println("Type A for addition followed by two integers" +
 "\nType S for subtraction followed by two integers" +
 "\nType M for multiplication followed by two integers" +
 "\nType D for division followed by two integers" +
 "\nType Q to finish");

 continue;//loop the program
 }
 //cont on next page

 if (code != 'Q'){//if the user did not type Q or q then
 //if the code is A,a, S,s,M,m,D, or D
 if((code == 'A') || (code == 'S') || (code == 'M') || (code == 'D')){
 //gather the rest of the input after the code and assign it to inputString
 inputString = inputString.substring(1, inputString.length());
 //read inputString into a new Scanner object "string"
 Scanner string = new Scanner(inputString);
 //if the inputString has an integer value
 if(string.hasNextInt()){
 one = string.nextInt();//assign it to variable "one"
 if(string.hasNextInt()){//if the inputString has another integer
 two = string.nextInt();//assign it to variable "two"
 }else{//if the second pass does not have an integer
 //tell the user to type only numbers
 System.out.println("Please only type two numbers (e.g. 2 3 or -2 3 or 2 -3)");
 continue;//restart the loop
 }
 }else{//if the first pass does not have an integer
 //tell the user to type only numbers
 System.out.println("Please only type two numbers (e.g. 2 3 or -2 3 or 2 -3)");
 continue;//restart the loop
 }
 }
 //Compare the code to determine its case
 switch (code){
 case 'A' : answer = (one + two);//if case A, addition
 System.out.println(one + " + " + two
 + " is " + answer);
 break;//break out of the switch
 case 'S' : answer = (one - two);//if case S, subtraction
 System.out.println(one + " - " + two
 + " is " + answer);
 break;//break out of the switch
 case 'M' : answer = (one * two);//if case M, multiplication
 System.out.println(one + " * " + two
 + " is " + answer);
 break;//break out of the switch
 case 'D' :

try{//check to ensure division is not by 0

answer = (one / two);//if case D, division
 System.out.println(one + " / " + two
 + " is " + answer);

}catch(java.lang.ArithmeticException aE){

//if division is by 0, output error message

System.out.println("Cannot divide by 0.");

}
 break;//break out of the switch
 default://if none of the above
 //tell the user to type one of the switches, or q to stop.
 System.out.println("Please type A, S, M, D, or Q to stop.");
 break;//break out of the switch (left for future use if needed.
 }
 }else{//if the input value is a Q
 quit = true;//set the application switch to true
 }
 } while (!quit);//if the application switch is true, end the application.
 }//End Main
}//END CLASS Switches()
Exercise 3: Class CountPunct is the shell of an application that counts all the punctuation marks in a file.

// Application CountPunct counts punctuation marks in a file

import java.util.Scanner;

import java.io.*;

public class CountPunct

{

public static void main(String[] args)

throws FileNotFoundException

{

FileReader file = new FileReader("Punct.dat");

Scanner inFile = new Scanner(file);

String line;

char symbol;

int periodCt = 0;

int commaCt = 0;

int questionCt = 0;

int colonCt = 0;

int semicolonCt = 0;

int count;

while (inFile.hasNextLine()) // Loop until end of data

{

line = inFile.nextLine();

count = 0;

while (count < line.length())

{ // Loop until end of line

symbol = line.charAt(count);

// TO BE FILLED IN: count punctuation marks

count++;

}

}

// TO BE FILLED IN: output

}

}

Fill in the missing code and run your program.

	Number of periods:
	Number of commas:

	Number of question marks:
	Number of colons:

	Number of semicolons:
	

Source:

import java.util.Scanner;
import java.io.*;
/**
 * Application CountPunct counts punctuation marks in a file
 */
public class CountPunct{
 public static void main(String[] args) throws FileNotFoundException {

 //Punct.dat should be in the same dir as CountPunct

 Scanner inFile = new Scanner(new FileReader("Punct.dat"));

 String line;//variable to store input

 char symbol;//variable to store the current char in "line"

 int periodCt = 0;//number of periods

 int commaCt = 0;//number of commas

 int questionCt = 0;//number of question marks

 int colonCt = 0;//number of colons

 int semicolonCt = 0;//number of semicolons

 int count;//variable to store symbol position

 while (inFile.hasNextLine()){// Loop until end of data

 line = inFile.nextLine();//gather input

 count = 0;//initialize the count

 while (count < line.length()){ // Loop until end of line

 //read the char at the current count number

 symbol = line.charAt(count);

 //using symbol as a switch check the following

 switch (symbol){

 case '.'://if it is a period

 periodCt++;//add to the period count

 break;//break out of the switch

 case ','://if it is a comma

 commaCt++;//add to the comma count

 break;//break out of the switch

 case '?'://if it is a question mark

 questionCt++;//add to the question mark count

 break;//break out of the switch

 case ':'://if it is a colon

 colonCt++;//add to the colon count

 break;//break out of the switch

 case ';'://if it is a semicolon

 semicolonCt++;//add to the semicolon count

 break;//break out of the switch

default://otherwise

break;//just leave the switch (left here for future use)

 }

 //add to the number of count so as to advance in the line's length

 count++;

 }

 }

 //Output results to console.

 System.out.println("Number of periods: " + periodCt +

 "\nNumber of commas: " + commaCt +

 "\nNumber of question marks: " + questionCt +

 "\nNumber of colons: " + colonCt +

 "\nNumber of semicolons: " + semicolonCt);

}//end Main
}//END CLASS
Output:

Number of periods: 6

Number of commas: 3

Number of question marks: 3

Number of colons: 4

Number of semicolons: 2

[image: image2.jpg]Additional Control Structures and Exceptions

)

Exercise 4: Add the code necessary for application CountPunct to count blanks as well. How many blanks are there in file Punct.dat? If you did not get 11, go back and check your program.

Source:
// Application CountPunct counts punctuation marks in a file
import java.util.Scanner;
import java.io.*;
/**
 * Application CountPunct counts punctuation marks in a file
 */
public class CountPunct{
 public static void main(String[] args) throws FileNotFoundException {

 //Punct.dat should be in the same dir as CountPunct

 Scanner inFile = new Scanner(new FileReader("Punct.dat"));

 String line;//variable to store input

 char symbol;//variable to store the current char in "line"

 int periodCt = 0;//number of periods

 int commaCt = 0;//number of commas

 int questionCt = 0;//number of question marks

 int colonCt = 0;//number of colons

 int semicolonCt = 0;//number of semicolons

 int count;//variable to store symbol position

 int blankCt = 0;//number of blanks

 while (inFile.hasNextLine()){// Loop until end of data

 line = inFile.nextLine();//gather input

 count = 0;//initialize the count

 while (count < line.length()){ // Loop until end of line

 //read the char at the current count number

 symbol = line.charAt(count);

 //using symbol as a switch check the following

 switch (symbol){

 case '.'://if it is a period

 periodCt++;//add to the period count

 break;//break out of the switch

 case ','://if it is a comma

 commaCt++;//add to the comma count

 break;//break out of the switch

 case '?'://if it is a question mark

 questionCt++;//add to the question mark count

 break;//break out of the switch

 case ':'://if it is a colon

 colonCt++;//add to the colon count

 break;//break out of the switch

 case ';'://if it is a semicolon

 semicolonCt++;//add to the semicolon count

 break;//break out of the switch

 case ' '://if it is a blank

 blankCt++;//add to the blank count

 break;//break out of the switch

default://otherwise

break;//just leave the switch (left here for future use)

 }

 //add to the number of count so as to advance in the line's length

 count++;

 }

 }

 //Output results to console.

 System.out.println("Number of periods: " + periodCt +

 "\nNumber of commas: " + commaCt +

 "\nNumber of question marks: " + questionCt +

 "\nNumber of colons: " + colonCt +

 "\nNumber of semicolons: " + semicolonCt +

 "\nNumber of blanks: " + blankCt);

}//end Main
}//END CLASS
Output:

Number of periods: 6

Number of commas: 3

Number of question marks: 3

Number of colons: 4

Number of semicolons: 2

Number of blanks: 11

[image: image3.jpg](8

Laboratory 7

Lesson 7-3: Additional Control Structures

Name: Jered McClure___________________________ Date: 25 Nov 2011_____________

Section: ITEC-1030-1 ___

Use program Looping for Exercises 1, 2, and 3. This program reads and sums exactly 10 integers and then reads and sums integers until a negative value is read.

// Application Looping uses a count-controlled loop to read

// and sum 10 integer values and an event-controlled loop to

// read and sum values until a negative value is found.

import java.io.*;

import java.util.Scanner;

public class Looping

{

public static Scanner inData;

public static void main(String[] args) throws IOException

{

inData = new Scanner(new FileReader("Looping.dat"));

int value;

int counter;

int sum;

counter = 1;

sum = 0;

while (counter <= 10)

{// Ten values read and summed

value = inData.nextInt();

sum = sum + value;

counter++;

}

System.out.println("The first sum is " + sum);

value = inData.nextInt();

sum = 0;

while (value >= 0)

{// Values are read and summed until a negative is read

sum = sum + value;

value = inData.nextInt();

}

System.out.println("The second sum is " + sum);

}

}

Exercise 1: Compile and run program Looping.

First sum is: 16522

Second sum is: 0
(Note: 0 is not the sum, the second loop is skipped as the scanner object does not have an integer available to read. I fix this in Exercise 2 using If statements.)
Source:

import java.io.*;
import java.util.Scanner;
/**
 * Application Looping uses a count-controlled loop to read
 * and sum 10 integer values and an event-controlled loop to
 * read and sum values until a negative value is found.
 */
public class SandBox{
 public static Scanner inData;//declare class Scanner object "inData"
 public static void main(String[] args) throws IOException{

 //instantiate the scanner object, Looping.dat must be in the

 //same dir as Looping()

 inData = new Scanner(new FileReader("Looping.dat"));

 int value;//variable to store input

 int counter;//application switch

 int sum;//total summation of application

 counter = 1;//initiate the counter variable

 sum = 0;//initiate the sum variable

 while (counter <= 10){// Ten values read and summed

 value = inData.nextInt();//gather input

 sum = sum + value;//add the input to the sum

 counter++;//increase the count

 }

 //output the current sum

 System.out.println("The first sum is " + sum);

 value = inData.nextInt();//gather input

 sum = 0;//reset the sum to 0

 while (value >= 0){// Values are read and summed until a negative is read

 sum = sum + value;//add the input to the sum

 value = inData.nextInt();//gather more input

 }

 //output the results

 System.out.println("The second sum is " + sum);
 }//End Main
}//END CLASS Looping()
[image: image4.jpg]Additional Control Structures and Exceptions

°J

Exercise 2: Program Looping contains two loops implemented with while statements.Rewrite program Looping, replacing the while statements with do statements.

The first sum is 16522

The second sum is -1500

Source:

import java.io.*;
import java.util.Scanner;
/**
 * Application Looping uses a count-controlled loop to read
 * and sum 10 integer values and an event-controlled loop to
 * read and sum values until a negative value is found.
 */
public class Looping{

public static Scanner inData;//declare class Scanner object "inData"

public static void main(String[] args) throws IOException{

 //instantiate the scanner object, Looping.dat must be in the

 //same dir as Looping()

 inData = new Scanner(new FileReader("Looping.dat"));

 int value = 0;//variable to store input

 int counter;//application switch

 int sum;//total summation of application

 counter = 1;//initiate the counter variable

 sum = 0;//initiate the sum variable

 do{// Ten values read and summed

 //if the scanner contains an integer

 if(inData.hasNextInt()){

 value = inData.nextInt();//gather input

 }

 sum = sum + value;//add the input to the sum

 counter++;//increase the count

 }while (counter <= 10);

 //output the current sum

 System.out.println("The first sum is " + sum);

 //if the scanner contains an integer

 if(inData.hasNextInt()){

 value = inData.nextInt();//gather input

 }

 sum = 0;//reset the sum to 0

 do{// Values are read and summed until a negative is read

 sum = sum + value;//add the input to the sum

 //if the scanner contains an integer

 if(inData.hasNextInt()){

 value = inData.nextInt();//gather more input

 }

 }while (value >= 0);

 //output the results

 System.out.println("The second sum is " + sum);

}//End Main
}//END CLASS Looping()
Exercise 3: Can program Looping be rewritten using a for statement for each loop? Explain.

The initial count controlled loop can be written using a for statement. However, the second loop cannot due to the fact it requires there to be a valid integer value in the scanner object on the next pass. As this cannot be guaranteed the for statement will be bypassed and give the result as 0.

Rewrite program Looping using a for statement to implement the count-controlledloop.
The first sum is 16522

The second sum is -1500

Source:

import java.io.*;
import java.util.Scanner;
/**
 * Application Looping uses a count-controlled loop to read
 * and sum 10 integer values and an event-controlled loop to
 * read and sum values until a negative value is found.
 */
public class Looping{

public static Scanner inData;//declare class Scanner object "inData"

public static void main(String[] args) throws IOException{

 //instantiate the scanner object, Looping.dat must be in the

 //same dir as Looping()

 inData = new Scanner(new FileReader("Looping.dat"));

 int value = 0;//variable to store input

 int counter;//application switch

 int sum;//total summation of application

 sum = 0;//initiate the sum variable

 for(counter = 1; counter <= 10; counter++){// Ten values read and summed

 //if the scanner contains an integer

 if(inData.hasNextInt()){

 value = inData.nextInt();//gather input

 }

 sum = sum + value;//add the input to the sum

 }

 //output the current sum

 System.out.println("The first sum is " + sum);

 //if the scanner contains an integer

 if(inData.hasNextInt()){

 value = inData.nextInt();//gather input

 }

 sum = 0;//reset the sum to 0

 do{// Values are read and summed until a negative is read

 sum = sum + value;//add the input to the sum

 //if the scanner contains an integer

 if(inData.hasNextInt()){

 value = inData.nextInt();//gather more input

 }

 }while (value >= 0);

 //output the results

 System.out.println("The second sum is " + sum);

}//End Main
}//END CLASS Looping()
Exercise 4: Rerun your program using data file Looping.d2. Describe what happens.

The system throws a FileNotFoundException as there is no file named Looping.d2 for it to read from.

If an error condition was generated, correct your program and rerun the program.

Note: I changed the output to make it more useful to the user as giving them false answers is decidedly useless.

Output:

ERROR: Input file not found, application aborted.

Source:
import java.io.*;
import java.util.Scanner;
/**
 * Application Looping uses a count-controlled loop to read
 * and sum 10 integer values and an event-controlled loop to
 * read and sum values until a negative value is found.
 */
public class Looping{

public static Scanner inData;//declare class Scanner object "inData"

public static void main(String[] args) throws IOException{

 try{//try to do the following

//instantiate the scanner object, input file must be in the

//same dir as Looping()

inData = new Scanner(new FileReader("Looping.d2"));

int value = 0;//variable to store input

int counter;//application switch

int sum;//total summation of application

sum = 0;//initiate the sum variable

for(counter = 1; counter <= 10; counter++){// Ten values read and summed

//if the scanner contains an integer

if(inData.hasNextInt()){

value = inData.nextInt();//gather input

}

sum = sum + value;//add the input to the sum

}

//output the current sum

System.out.println("The first sum is " + sum);

//if the scanner contains an integer

if(inData.hasNextInt()){

value = inData.nextInt();//gather input

}

sum = 0;//reset the sum to 0

do{// Values are read and summed until a negative is read

sum = sum + value;//add the input to the sum

//if the scanner contains an integer

if(inData.hasNextInt()){

value = inData.nextInt();//gather more input

}

}while (value >= 0);

//output the results

System.out.println("The second sum is " + sum);

 }catch(FileNotFoundException fNFE){//if the input file cannot be found

//inform the user of the error and abort the program.

System.out.println("ERROR: Input file not found, application aborted.");

 }

}//End Main
}//END CLASS Looping()
Exercise 5: Application CountPunct has two while loops. Replace the first with a do statement and the second with a for statement. You must add an assumption to the application, what is it? Rerun your application with the same data.

Source:
import java.util.Scanner;
import java.io.*;
/**
 * Application CountPunct counts punctuation marks in a file.
 * It is assumed that the input file will have data on its
 * first line.
 */
public class CountPunct{

public static void main(String[] args) throws FileNotFoundException {

try{

//Punct.dat should be in the same dir as CountPunct

Scanner inFile = new Scanner(new FileReader("Punct.dat"));

String line;//variable to store input

char symbol;//variable to store the current char in "line"

int periodCt = 0;//number of periods

int commaCt = 0;//number of commas

int questionCt = 0;//number of question marks

int colonCt = 0;//number of colons

int semicolonCt = 0;//number of semicolons

int count;//variable to store symbol position

int blankCt = 0;//number of blanks

do{// Loop until end of data

line = inFile.nextLine();//gather input

for(count = 0;count < line.length();count++){ // Loop until end of line

//read the char at the current count number

symbol = line.charAt(count);

//using symbol as a switch check the following

switch (symbol){

case '.'://if it is a period

periodCt++;//add to the period count

break;//break out of the switch

case ','://if it is a comma

commaCt++;//add to the comma count

break;//break out of the switch

case '?'://if it is a question mark

questionCt++;//add to the question mark count

break;//break out of the switch

case ':'://if it is a colon

colonCt++;//add to the colon count

break;//break out of the switch

case ';'://if it is a semicolon

semicolonCt++;//add to the semicolon count

break;//break out of the switch

case ' '://if it is a blank

blankCt++;//add to the blank count

break;//break out of the switch

default://otherwise

break;//just leave the switch (left here for future use)

}

}

}while(inFile.hasNextLine());

//Output results to console.

System.out.println("Number of periods: " + periodCt +

"\nNumber of commas: " + commaCt +

"\nNumber of question marks: " + questionCt +

"\nNumber of colons: " + colonCt +

"\nNumber of semicolons: " + semicolonCt +

"\nNumber of blanks: " + blankCt);

}catch(FileNotFoundException fNFE){

System.out.println("ERROR: Input file not found, application aborted.");

}

}//end Main
}//END CLASS
Output:

Number of periods: 6

Number of commas: 3

Number of question marks: 3

Number of colons: 4

Number of semicolons: 2

Number of blanks: 11

[image: image5.jpg](10 | Laboratory 7

Lesson 7-4: Exception Handling

Name: Jered McClure___________________________ Date: 25 Nov 2011_____________

Section: ITEC-1030-1 ___

Exercise 1: In Exercise 1 in Lesson 7-2, we pointed out that class Switches was not very robust. You were asked in Exercise 2 to use the default case in the switch statement to handle the case of incorrect input data. Rewrite this solution so that an object of an exception class is thrown on the default case. Compile and run your solution. Compare your output with the output in Exercise 2. Were they the same?

Output:

Type A for addition followed by two integers

Type S for subtraction followed by two integers

Type M for multiplication followed by two integers

Type D for division followed by two integers

Type Q to finish

b

Exception Thrown: Invalid Input. Please type A, S, M, D, or Q to stop

Application aborted

The output is not the same, but that is because I did not cause the application to loop upon reaching the Exception.

Source:

import java.util.*;
/**
 * Application Switches demonstrates the use of the switch
 * statement via mathematical operations.
 */
public class Switches{

public static void main(String[] args)throws InputMismatchException{

try{

char code;//Variable to store user choice

int answer;//Variable to store output

int one = 0;//the first numerical value of the equation

int two = 0;//the second numerical value of the equation

String inputString;//variable to store input

boolean quit = false;//Application control switch

//Instantiate and declare the scanner object "inLine"

Scanner inLine = new Scanner(System.in);

//Explain how input works

System.out.println("Type A for addition followed by two integers" +

"\nType S for subtraction followed by two integers" +

"\nType M for multiplication followed by two integers" +

"\nType D for division followed by two integers" +

"\nType Q to finish");

do {//begin doWhile loop

inputString = inLine.nextLine();//gather input from user

inputString = inputString.toUpperCase();//set that input to upper case

if(!(inputString.isEmpty())){//ensure that the input is not null

code = inputString.charAt(0);//set where the control switch is located

 //in the user's input

}else{//if the input is null

//Reprint directions

System.out.println("Type A for addition followed by two integers" +

"\nType S for subtraction followed by two integers" +

"\nType M for multiplication followed by two integers" +

"\nType D for division followed by two integers" +

"\nType Q to finish");

continue;//loop the program

}

if (code != 'Q'){//if the user did not type Q or q then

//if the code is A,a, S,s,M,m,D, or D

if((code == 'A') || (code == 'S') || (code == 'M') || (code == 'D')){

//gather the rest of the input after the code and assign it to inputString

inputString = inputString.substring(1, inputString.length());

//read inputString into a new Scanner object "string"

Scanner string = new Scanner(inputString);

//if the inputString has an integer value

if(string.hasNextInt()){

 one = string.nextInt();//assign it to variable "one"

 if(string.hasNextInt()){//if the inputString has another integer

 two = string.nextInt();//assign it to variable "two"

 }else{//if the second pass does not have an integer

 //tell the user to type only numbers

 System.out.println("Please only type two numbers (e.g. 2 3 or” +

 ” -2 3 or 2 -3)");

continue;//restart the loop

 }

}else{//if the first pass does not have an integer

//tell the user to type only numbers

System.out.println("Please only type two numbers (e.g. 2 3 or -2 3 or” +

 “ 2 -3)");

continue;//restart the loop

}

}

//Compare the code to determine its case
 switch (code){
 case 'A' : answer = (one + two);//if case A, addition
 System.out.println(one + " + " + two
 + " is " + answer);
 break;//break out of the switch
 case 'S' : answer = (one - two);//if case S, subtraction
 System.out.println(one + " - " + two
 + " is " + answer);
 break;//break out of the switch
 case 'M' : answer = (one * two);//if case M, multiplication
 System.out.println(one + " * " + two
 + " is " + answer);
 break;//break out of the switch
 case 'D' :
 try{//check to ensure division is not by 0
 answer = (one / two);//if case D, division
 System.out.println(one + " / " + two
 + " is " + answer);
 }catch(java.lang.ArithmeticException aE){
 //if division is by 0, output error message
 System.out.println("Cannot divide by 0.");
 }
 break;//break out of the switch
 default://if none of the above

 throw new InputMismatchException("Invalid Input. Please type A, S, M, D, or Q to stop");
 }
 }else{//if the input value is a Q
 quit = true;//set the application switch to true
 }
 } while (!quit);//if the application switch is true, end the application.

}catch(InputMismatchException iME){

System.out.println("Exception Thrown: " + iME.getMessage());

System.out.println("Application aborted");

}
 }//End Main
}//END CLASS Switches()
Exercise 2: Go through the classes in this lesson and count how many of them could throw an IOException. How many are there? What is the common theme in these applications?

All of the classes COULD throw an IOException, the reason being that they have to rely on user input. A program’s main stepping stone is leaving the programmer’s hands and reaching that of the user’s. If the programmer has not prepared their code for this, then the application will crash.
Exercises 3 through 7 use the following application shell.

import java.io.*;

import java.util.Scanner;

public class Exceptions

{

static Scanner inFile;

public static void main(String[] args) throws IOException

{

int fileTry = 0;

String fileName;

Scanner inName = new Scanner(System.in);

System.out.println("Enter file name");

fileName = inName.nextLine();

boolean fileOk;

do

{

fileOk = false;

try

{

// TO BE FILLED IN: Exercise 3

}

catch(FileNotFoundException error)

{

// TO BE FILLED IN: Exercise 4

}

} while (!fileOk && fileTry < 4);

PrintWriter outFile =

new PrintWriter(new FileWriter("outData.dat"));

if (/* TO BE FILLED IN: Exercise 5 */)

{

int numDays = 0;

double average;

double inches = 0.0;

double total = 0.0;

while (inFile.hasNextFloat())

{

inches = inFile.nextFloat();

total = total + inches;

outFile.println(inches);

numDays++;

}

if (numDays == 0)

System.out.println("Average cannot be computed " +

" for 0 days.");

else

{

average = total / numDays;

outFile.println("The average rainfall over " +

numDays + " days is " + average);

}

inFile.close();

}

else

// TO BE FILLED IN: Exercise 5

outFile.close();

}

}

[image: image6.jpg]Additional Control Structures and Exceptions 11)

Each of the applications has set the file name as a literal. If the file cannot be found, the program crashes. Class Exceptions lets the user input the file name from the keyboard. If the file cannot be found, the user is prompted to reenter the file name. The user gets four tries to enter the name correctly before the application quits without processing the data. The application itself is the rainfall-averaging program.

Exercise 3: Fill in the try portion in which the Scanner is instantiated and fileOK is set to true.

try{

//instantiate a new scanner object and point it at the FileReader

//Object which is pointing to the fileName given by the user

inFile = new Scanner(new FileReader(fileName));

fileOk = true;//confirm this is a file

}
Exercise 4: Fill in the catch portion in which the user is prompted to reenter the file name, the file name is read, and fileTry is incremented.

}catch(FileNotFoundException error){//no file found

//Inform the user there is no file of that name

System.out.println("No file found!\nEnter file name: ");

fileName = inName.nextLine();//ask for the file name again

fileTry++;

}//end tryCatch
Exercise 5: Fill in the if expression so that the average is calculated or an error message is written on the output file.
if(fileOk){}

 outFile.close();
 System.out.println("File Closed.");
(Note: I noticed this if statement had an else at the end. As the only thing the else was doing was outFile.close() I removed the else so that the outFile would close no matter how the system ran. I did come across a situation where the outFile did not close, and as such, I was unable to write anything to it for Exercise 7.)
Exercise 6: Run the application using file inData.dat. What is printed?

2.299999952316284

3.0999999046325684

0.30000001192092896

1.100000023841858

2.200000047683716

2.0999999046325684

0.0

0.4000000059604645

0.7599999904632568

0.5

1.0

0.5

The average rainfall over 12 days is 1.1883333201209705

Exercise 7: Run the application using the wrong file name 4 times. What is printed?

Output:

Enter file name:

badfa

No file found!

Enter file name:

adsf

No file found!

Enter file name:

fadsf

No file found!

Enter file name:

asdfa

No file found!

Enter file name:

asdfa

File Closed.

Source:

import java.io.*;
import java.util.Scanner;
/**
 * Class Exception: Prompts the user for the location of
 * a data file
 */
public class Exceptions{
 static Scanner inFile;//Scanner object to gather input
 public static void main(String[] args) throws IOException{
 int fileTry = 0;//initialize the count
 String fileName;//variable to store user input on the fileName
 Scanner inName = new Scanner(System.in);//instantiate the scanner object
 System.out.println("Enter file name: ");//Ask for input
 fileName = inName.nextLine();//gather input and assign to fileName
 boolean fileOk;//application switch
 do{//do the following
 fileOk = false;//set the switch to false/off
 try{//try to do the following
 //instantiate a new scanner object and point it at the FileReader
 //Object which is pointing to the fileName given by the user
 inFile = new Scanner(new FileReader(fileName));
 fileOk = true;//confirm this is a file
 }catch(FileNotFoundException error){//no file found
 //Inform the user there is no file of that name
 System.out.println("No file found!\nEnter file name: ");
 fileName = inName.nextLine();//ask for the file name again
 fileTry++;//increase the number of fileTrys
 }//end tryCatch
 //do the above until either the switch is true or fileTry is greater
 //than 4
 }while (!fileOk && fileTry < 4);
 //instantiate the PrintWriter object "outFile" along with the output
 //file "outData.dat" stored in the same dir as Exceptions
 PrintWriter outFile = new PrintWriter(new FileWriter("outData.dat"));
 if(fileOk){//if the switch is set to true
 int numDays = 0;//set the number of days counter to 0
 double average;//variable to store the average rainfall
 double inches = 0.0;//initialize the inches at 0.0
 double total = 0.0;//initialize the total at 0.0
 //While there is still data to be input
 while (inFile.hasNextFloat()){
 inches = inFile.nextFloat();//gather that input
 total = total + inches;//sum the inches
 outFile.println(inches);//print the inches to outData.dat
 numDays++;//increase the number of days
 }//end while loop

//Cont on next page

 if (numDays == 0){//if the number of days is 0

//inform the user of the error
 System.out.println("Average cannot be computed " +
 " for 0 days.");
 }else{//otherwise
 average = total / numDays;//find the average rainfall
 outFile.println("The average rainfall over " +
 numDays + " days is " + average);//inform the user
 System.out.println("The average rainfall over " +

 numDays + " days is " + average);//send to console
 }
 //close out the inFile
 inFile.close();
 }
 //close out the outFile
 outFile.close();
 //inform the user via console.
 System.out.println("File Closed.");
 }//End Main
}// END CLASS Exceptions()

[image: image7.jpg](12 | Laboratory 7

Lesson 7-5: Debugging

Name: Jered McClure___________________________ Date: 25 Nov 2011_____________

Section: ITEC-1030-1 ___

Exercise 1: Program Bugs is supposed to sum the first ten values on a file and the second ten values on a file. The second ten values are a duplicate of the first ten, so the answers should be the same. The program checks to be sure that the file has been found and halts execution if the file is not found. Program Bugs compiles, says that the file cannot be found, but then crashes. Can you find the problem? Describe it.

This one had me going, in the doWhile loop it was based on a counter which was never incremented within the loop. One would think this would have made the loop an infinite loop, but rather, it threw a NoSuchElementException instead. I added counter++ to the loop and this fixed the question.
Exercise 2: Correct the problem and rerun the program. The file cannot be found, but now the program halts correctly. Correct the name of the file and rerun the program.

Uhm…the program runs just fine. I am assuming that the writer of this Lab meant to make the file name incorrect. However, the program has it listed as Bug.dat by default. In any case it would say “Bugs.dat not found” were I to name it anything else, even if it weren’t Bugs.dat such as monkey.bot.

Exercise 3: What—the program crashes again? Back to the drawing board. Describe the next error you find. Correct the program and run it again.

No it did not crash…who wrote this lab? I can only assume it was meant to crash by having the correct name now because of the counter (this lab is really inconsistent!). As such, I went back and made the name incorrect, it gave a NullPointerException because there is no break on the case 2 line. I added this in and the bug went away.
Exercise 4: Now you are getting output, but the answer is wrong for the second sum. When you find this last error, describe it, correct it, and rerun the program. What are the correct totals?

In the for loop there is an additional counter++ listed at the end. I removed this and the bug went away.

Output:

55

55

Source:

// Application Bugs demonstrates various looping structures.
import java.io.*;
import java.util.Scanner;
public class Bugs{
 public static Scanner inData;
 public static void main(String[] args) throws IOException{
 int fileFound;//application switch
 try {//try the following

 //instantiate the Scanner object inData using the file "Bug.dat"
 inData = new Scanner(new FileReader("Bug.dat"));
 fileFound = 1;//if the file is found, set the switch to 1
 }catch (IOException exception){//if the file is not found
 fileFound = 2; //set the switch to 2
 }
 int value;//variable to store input from Bug.dat
 switch (fileFound){//using the fileFound variable as a switch
 //if no file is found, inform the user and break out of the switch statement
 case 2 : System.out.println("Bugs.dat not found");
 break;
 case 1 ://if a file is found
 // do loop
 int counter = 1;//set the counter to 1
 int sum = 0;//set the sum to 1
 do{//do the following
 value = inData.nextInt();//gather input from Bug.dat
 sum = sum + value;//sum the input
 counter++;//increase the counter
 //do the above until the counter reaches 10
 }while (counter <= 10);
 System.out.println(sum);//display results
 // for loop
 sum = 0;//set the sum back to 0
 //set the counter to 1 and get the next sum
 for (counter = 1; counter <= 10; counter++){
 value = inData.nextInt();//gather input from Bug.dat
 sum = sum + value;//sum the input
 }
 System.out.println(sum);//display the results
 }//end Switch statement
 }//End Main
}//END CLASS Bugs
