[image: image1.jpg]Loops and Files 5)

Lesson 6-2: Count-Controlled Loops

Name: Jered McClure__________________________ Date: 24 Nov 2011______________

Section: ITEC-1030-1 ___

Use application HiScore for Exercises 1 and 2.

// Application HiScore reads and prints three test scores.

// The largest value of the three is printed with an

// appropriate message

// Assumption: The scores are unique

import java.util.Scanner;

public class HiScore

{

static int largest(int one, int two, int three)

{

int highest = 0;

if (one > two)

highest = one;

else

highest = two;

if (three > highest)

highest = three;

return highest;

}

public static void main(String[] args)

{

Scanner inData = new Scanner(System.in);

int score1;

int score2;

int score3;

// Prompt for and read in scores

System.out.println("Enter three test scores.");

score1 = inData.nextInt();

score2 = inData.nextInt();

score3 = inData.nextInt();

System.out.println("The test scores are " + score1

+ ", " + score2 + ", " + score3);

System.out.println("The highest is "

+ largest(score1, score2, score3));

}

}

Exercise 1: In order to test application HiScore in Laboratory 5, you had to run it six times with different data in order to thoroughly test it. Rewrite the body of function main so that the application runs six times. Run your program with the data from Laboratory 5.

I completed this task in Laboratory 5. As such, I will directly quote from my Lab05 worksheet turned in to the ITEC-1030-1 class on 18 Nov 2011:

Start Quote:“

 //0. Class HiScore
//===
import java.util.Scanner;
/** Application HiScore reads and prints three test scores.
 * The largest value of the three is printed with an
 * appropriate message
 * Assumption: The scores are unique
 */
public class HiScore{
 //1. Largest
//===
 /**
 * largest(): given three integer values, this method
 * will return the value which is the largest.
 * @param one, two, three
 */
 static int largest(int one, int two, int three){
// Fill in the rest of the method
 int largest = 0;//value to store the biggest number
 if(one >= two){//if one is bigger than two, or the same number
 largest = one;//assign one to largest
 }else if(two > one){//if two is bigger than one
 largest = two;//assign two to largest
 }else if(three > largest){//if three is bigger than the value in largest
 largest = three;//store three in largest
 }
 return largest;//return the value of largest
 }
 //2. Main
//===
 public static void main(String[] args){
 Scanner inData = new Scanner(System.in);
 int score1;
 int score2;
 int score3;
 boolean go = true;
 int menuChoice;//value to store the user's choice at the menu
 //2.1 Score Input
//===
 // Prompt for and read in scores
 while(go == true){//Control switch for main loop
 System.out.println("Enter three test scores.");//ask for input
 if(inData.hasNextInt()){//if the input is an integer
 score1 = inData.nextInt();//assign it to score1
 if(inData.hasNextInt()){//if the next input is an integer
 score2 = inData.nextInt();//assign it to score2
 if(inData.hasNextInt()){//if the next input is an integer
 score3 = inData.nextInt();//assign it to score3
 }else{//if the third input is not an integer
 //tell the user to input a number
 System.out.println("Please Type a number.");
 inData = new Scanner(System.in);//reset the scanner object
 continue;//loop the program
 }
 }else{//if the second input is not an integer
 //tell the user to input a number
 System.out.println("Please Type a number.");
 inData = new Scanner(System.in);//reset the scanner object
 continue;//loop the program
 }
 }else{//if the first input is not an integer
 //tell the user to input a number
 System.out.println("Please Type a number.");
 inData = new Scanner(System.in);//reset the scanner object
 continue;//loop the program
 }//end of score prompt
 //2.2 Score Output
//===
 // Inform the user of which score is the largest
 System.out.println("The Test Scores are " + score1 + ", " +
 score2 + ", " + score3 + ".");
 System.out.println("The highest is " +
 largest(score1,score2,score3) + ".\n");
 //2.3 Menu
//===
 //Ask the user whether they would like to input more scores
 //if they say no, end the program. If they say yes, loop the program
 //If it is an invalid input ask for appropriate input.
 //If the input is correct but does not match the requested numbers,
 //loop the menu.
 while(go == true){//menu loop control
 //ask the user for input
 System.out.println("Would you like to enter any more scores?\n" +
 "Type 1 for yes\nType 2 to quit this program");
 if(inData.hasNextInt()){//if their input is an integer
 menuChoice = inData.nextInt();//assign it to menuChoice
 if(menuChoice == 1){//if the user input 1
 break;//break out of the menu
 }else if(menuChoice == 2){//if the user input 2
 System.out.println("Good bye!");//tell them good bye
 go = false;//halt the program
 }else{//if the user input another number
 continue;//loop the menu
 }
 }else{//if the user did not input an integer
 System.out.println("Please Type a number.");//tell them to type a number
 inData = new Scanner(System.in);//reset the scanner object
 continue;//loop the menu
 }
 }//End Menu loop
 }//End Score Input loop
 }//End Main
}//End Class
 // End Class HiScore
//===
Input values

100
80
70
100
70
80

70
80
100
80
70
100

80
100
70
70
100
80

Output:

Enter three test scores.

100

70

80

The Test Scores are 100, 70, 80.

The highest is 100.

Would you like to enter any more scores?

Type 1 for yes

Type 2 to quit this program

1

Enter three test scores.

80

80

100

The Test Scores are 80, 80, 100.

The highest is 80.

Would you like to enter any more scores?

Type 1 for yes

Type 2 to quit this program

1

Enter three test scores.

70

100

70

The Test Scores are 70, 100, 70.

The highest is 100.

Would you like to enter any more scores?

Type 1 for yes

Type 2 to quit this program

1

Enter three test scores.

100

80

70

The Test Scores are 100, 80, 70.

The highest is 100.

Would you like to enter any more scores?

Type 1 for yes

Type 2 to quit this program

1

Enter three test scores.

70

70

100

The Test Scores are 70, 70, 100.

The highest is 70.

Would you like to enter any more scores?

Type 1 for yes

Type 2 to quit this program

1

Enter three test scores.

80

100

80

The Test Scores are 80, 100, 80.

The highest is 100.

Would you like to enter any more scores?

Type 1 for yes

Type 2 to quit this program

2

Good bye!

”:End Quote

[image: image2.jpg](6

Laboratory 6

Exercise 2: Change application HiScore so that the number of data values is a variable rather than a literal. The number of data values is prompted for and read from System.in. Your output should be the same for this exercise and Exercise 1.

As I did not need to write a program for exercise 1, I wrote a brand new one for this exercise, source code:

import java.util.Scanner;
/**
 * Application HiScore reads and prints test scores.
 * The largest value of the input test scores is displayed,
 * along with an appropriate message.
 * Note: the values input are assumed to be unique
 */
public class HiScore{//begin class HiScore
 //Declare and instantiate the scanner object "inData"
 static Scanner inData = new Scanner(System.in);
 public static void main(String[] args){//begin Main
 boolean go = true;//control switch for applicaiton
 int counter;//variable to store the number of scores
 float testScore;//variable to store the test scores
 String menuChoice;//variable to store the user's input
 //begin loop
 while(go){
 String toStringScores = "";//variable to concat the test scores
 float largest = 0F;//intitialize the largest number to 0.0
 //ask for input
 System.out.println("How many test scores do you have?");
 //ensure input is valid #1
 if(inData.hasNextInt()){
 counter = inData.nextInt();//gather input
 //declare the number of scores to be input
 System.out.println("Please enter the " + counter + " test scores.");
 System.out.println("Type a letter to clear the counter and start again.");
 //begin the score input loop
 while(counter > 0){//while there are still scores left to input
 if(inData.hasNextFloat()){//check to insure valid input
 testScore = inData.nextFloat();//gather input
 if(counter > 1){//if the counter is above 1
 //concat the score to the previous score
 toStringScores = toStringScores + testScore + ", ";
 }else{//if the counter is 1
 //concat the score to the previous without a comma
 toStringScores = toStringScores + testScore;
 }
 //if the current score is larger then the previous
 if(testScore > largest){
 largest = testScore;//set the "largest" variable to
 //the current score
 }
 counter--;//remove one count from the counter and loop
 }else{//if the user does not input a valid float number
 //inform them of the error, reset the scanner and counter
 //then loop the program.
 System.out.println("Non-numerical input.");
 System.out.println("Restarting program.\n");
 inData = new Scanner(System.in);
 counter = 0;
 }
 }
 }else{//if the user does not input a valid integer at #1
 //tell them to type a number
 System.out.println("Please type a number.");
 //reset the scanner
 inData = new Scanner(System.in);
 //then loop the program
 continue;
 }
 //output the concat string and the largest value
 System.out.println("You entered: " + toStringScores + ".");
 System.out.println("The highest score is: " + largest);
 //inform the user how to end the application
 System.out.println("Type OFF to quit or press enter to continue.");
 //clear the scanner object by calling a new object
 //this is because there is still a blank space in the previous object
 inData = new Scanner(System.in);
 //gather the user's input and assign to "menuChoice
 menuChoice = inData.nextLine().trim();
 //if the user types "off"
 if(menuChoice.equalsIgnoreCase("off")){
 go = false;//end the program
 }else{
 menuChoice = null;//otheriwse clear menuChoice and loop the application
 }
 }//end main Loop (go)
 }//End Main
}//End Class HiScore
Input values

100
80
70
100
70
80

70
80
100
80
70
100

80
100
70
70
100
80

Output:

How many test scores do you have?

3

Please enter the 3 test scores.

Type a letter to clear the counter and start again.

100

70

80

You entered: 100.0, 70.0, 80.0.

The highest score is: 100.0

Type OFF to quit or press enter to continue.

How many test scores do you have?

3

Please enter the 3 test scores.

Type a letter to clear the counter and start again.

80

80

100

You entered: 80.0, 80.0, 100.0.

The highest score is: 100.0

Type OFF to quit or press enter to continue.

How many test scores do you have?

3

Please enter the 3 test scores.

Type a letter to clear the counter and start again.

70

100

70

You entered: 70.0, 100.0, 70.0.

The highest score is: 100.0

Type OFF to quit or press enter to continue.

How many test scores do you have?

3

Please enter the 3 test scores.

Type a letter to clear the counter and start again.

100

80

70

You entered: 100.0, 80.0, 70.0.

The highest score is: 100.0

Type OFF to quit or press enter to continue.

How many test scores do you have?

3

Please enter the 3 test scores.

Type a letter to clear the counter and start again.

70

70

100

You entered: 70.0, 70.0, 100.0.

The highest score is: 100.0

Type OFF to quit or press enter to continue.

How many test scores do you have?

3

Please enter the 3 test scores.

Type a letter to clear the counter and start again.

80

100

80

You entered: 80.0, 100.0, 80.0.

The highest score is: 100.0

Type OFF to quit or press enter to continue.

off

Exercise 3: In Lesson 4–3, you were asked to enhance class Distance with methods add and toString and to normalize the arguments in the constructor. Your test plan must have been very long or required you to run your program many times. Rewrite your test plan, using one or more count-controlled loops. (In case you never finished that assignment, a copy of the enhanced version of class Distance is provided.)

Once again, I did this correctly in week 4. As copied directly from my Unit4APPMcClureJ.doc turned into ITEC-1030-1 on 15 Nov 2011:
(Starts on next page)

Begin Quote:”

	Steps
	Expected Result
	Pass or Fail
	Comments

	Create an empty object of type Distance
	Object is created without fault
	
	

	Create an object of type distance with the values of 1, 1, 1
	Object is created without fault
	
	

	Create an object of type Distance with the values of -1, -1, -1
	Object is created without fault
	
	

	Create and\ object of type distance with the values of 0,0,0
	Object is created without fault
	
	

	Create an object of the type distance with the values 4, 1761, 0
	Object is created without fault
	
	

	Add the values of the second object with the values of the fifth object, store them in a sixth object
	Object is created without fault
	
	

	use the getter methods for object 1
	Returns all zeros
	
	

	Use the getter methods for object 2
	returns all ones
	
	

	Use the toString method for objects 3 through 6
	Returns the values in string format. For Object 6, the values of object 2 and object five will be the sum values.
	
	

“:End Quote

Exercise 4: Implement your test plan.

And again, begin quote:”
Using the DrJava Interaction pane:

> Distance distance1 = new Distance();

> Distance distance2 = new Distance(1,1,1);

> Distance distance3 = new Distance(-1,-1,-1);

> Distance distance4 = new Distance(0,0,0);

> Distance distance5 = new Distance(4,1761,0);

> Distance distance6 = distance2.addDistance(distance5);

> System.out.println("Feet: " + distance1.getFeet() + ". Yards: " + distance1.getYards() + ". Miles: " + distance1.getMiles);

Static Error: No field in Distance has name 'getMiles'

> System.out.println("Feet: " + distance1.getFeet() + ". Yards: " + distance1.getYards() + ". Miles: " + distance1.getMiles());

Feet: 0. Yards: 0. Miles: 0

> System.out.println("Feet: " + distance2.getFeet() + ". Yards: " + distance2.getYards() + ". Miles: " + distance2.getMiles());

Feet: 1. Yards: 1. Miles: 1

> System.out.println("Three: " + distance3.toString() + "\nFour: " + distance4.toString() + "\nFive: " + distance5.toString() + "\nSix: " + distance6.toString());

Three: Feet: 0, Yards: 0, Miles: 0

Four: Feet: 0, Yards: 0, Miles: 0

Five: Feet: 1, Yards: 2, Miles: 1

Six: Feet: 2, Yards: 3, Miles: 2
	Steps
	Expected Result
	Pass or Fail
	Comments

	Create an empty object of type Distance
	Object is created without fault
	 Pass
	

	Create an object of type distance with the values of 1, 1, 1
	Object is created without fault
	 Pass
	

	Create an object of type Distance with the values of -1, -1, -1
	Object is created without fault
	 Pass
	

	Create and\ object of type distance with the values of 0,0,0
	Object is created without fault
	 Pass
	

	Create an object of the type distance with the values 4, 1761, 0
	Object is created without fault
	 Pass
	

	Add the values of the second object with the values of the fifth object, store them in a sixth object
	Object is created without fault
	 Pass
	

	use the getter methods for object 1
	Returns all zeros
	 Pass
	I created a syntax error, but fixed on the next pass.

	Use the getter methods for object 2
	returns all ones
	 Pass
	

	Use the toString method for objects 3 through 6
	Returns the values in string format. For Object 6, the values of object 2 and object five will be the sum values.
	 Pass
	Sum is correct

Full source code for class Distance():

 //0. Class Distance
//===
 /**
 * Class Distance(): Stores, normalizes, and returns linear distances.
 */
public class Distance{
 int feet;
 int yards;
 int miles;
 //1. Constructors
//===
 //Default Constructor
 public Distance(){
 feet = 0;
 yards = 0;
 miles = 0;
 }
 /**
 * Distance(): Parameterized Constructor, takes in given integer values
 * and stores them as feet, yards, and miles respectively. If a value
 * greater than the normalized value is given, it is normalized and
 * incremented as necessary. If a value less than 0 is given, the value
 * is stored as 0.
 */
 public Distance(int inFeet, int inYards, int inMiles){//Begin param constructor
 miles = inMiles; //Default miles to the given param inMiles
 int ovrFlwFt = 0; //Variable to store the overflow of inFeet
 int ovrFlwYrds = 0; //Variable to store the overflow of inYards
 if(inFeet < 0){ //If inFeet is less than zero
 feet = 0; //Set the value of Feet to zero
 }else if(inFeet > 3){ //If the value of feet is greater than three
 ovrFlwFt = inFeet / 3; //divide the value by three and assign it to overflow
 feet = inFeet % 3; //Set the remainder of the quotient to feet.
 }else{ //Otherwise,
 feet = inFeet; //set feet to the given param inFeet
 }
 yards = inYards + ovrFlwFt; //Default yards to the sum of the given param
 //inYards and the overflow of feet.
 if(yards < 0){ //If yards is less than zero
 yards = 0; //set yards to zero
 }else if(yards > 1760){ //If yards is greater than 1760
 ovrFlwYrds = yards / 1760; //Divide yards by 1760 and assign to overflow
 yards = yards % 1760; //Set the remainder of the quotient to yards.
 }
 if(miles < 0){ //If miles is less than zero
 miles = 0; //Set miles to zero
 }else{ //Otherwise,
 miles = miles + ovrFlwYrds; //Set miles to the sum of miles and the overflow
 //of yards.
 }
 } //End parameterized constructor.
//cont on next page

 //2. Getter Methods
//===
 /**
 * getFeet(): Returns the value stored in Feet of class
 * Distance().
 */
 public int getFeet(){
 return feet;
 }
 /**
 * getYards(): Returns the value stored in Yards of class
 * Distance().
 */
 public int getYards(){
 return yards;
 }
 /**
 * getMiles(): Returns the value stored in Miles of class
 * Distance()
 */
 public int getMiles(){
 return miles;
 }
 /**
 * toString(): returns a string value for the given distance.
 * Feet: X, Yards: Y, Miles: Z
 */
 public String toString(){
 return "Feet: " + feet + ", Yards: " + yards + ", Miles: " + miles;
 }
 //3. Operation Methods
//===
 /**
 * addDistance(): Returns the result of adding two distances together.
 */
 public Distance addDistance(Distance dis){
 return new Distance(feet + dis.getFeet(), yards + dis.getYards(), miles + dis.getMiles());
 }
}
 “:End Quote

[image: image3.jpg]Loops and Files 7)

Lesson 6-3: Event-Controlled Loops

Name __ Date _______________________

Section ___

Use application OddEven for Exercises 1 through 4.

import java.util.Scanner;

public class OddEven

{

public static Scanner inData;

public static PrintWriter outFile;

public static void main(String[] args) throws IOException

{

int value;

int oddCount = 0;

int evenCount = 0;

inData = new Scanner(System.in);

System.out.println("Enter an integer value or 0 to " + "stop");

value = inData.nextInt();

while (/* TO BE FILLED IN: Exercise 1 */)

{

/* TO BE FILLED IN: Exercise 2 */

}

/* TO BE FILLED IN: Exercise 3 */

}

}

Exercise 1: Write the while expression that returns true if the first data value is not zero.

while(value != 0){}

Exercise 2: Write the loop body that counts the number of odd and the number of even values.

 //ask for input

 System.out.println("Enter an integer value or 0 to stop");

 value = inData.nextInt();//assign the input to "value"

 while (value !=0)//while value does not equal 0

 {

 if(value % 2 == 1){//if the value is divisible by 2

 evenCount++;//add to even count

 }else{//otherwise

 oddCount++;//add to the odd cont

 }

 //ask for further input

 System.out.println("Enter an integer value or 0 to stop");

 value = inData.nextInt();//assign the input to "value"

 }
Exercise 3: Write the output statement(s) that prints the number of odd and the number of even values.

 outFile = new PrintWriter(new FileWriter("OddEven.dat"));

 //output to the outFile the results

 outFile.println("There were " + evenCount + " even numbers.");

 outFile.println("There were " + oddCount + " odd numbers.");

 outFile.close();

Exercise 4: Write and implement a test plan. What data values did you use? What was the output?

	Steps
	Expected Result
	Pass or Fail
	Comments

	Start Application
	Application starts and prompts for input
	Pass
	

	Input numerical values 1 through 5
	Application accepts each value looping to accept another without error
	Pass
	

	Input numerical value 0
	Application halts and prints to file OddEven.dat results of input. Application releases the outFile to the OS.
	Pass
	OddEven.dat contains:

There were 3 even numbers.

There were 2 odd numbers.

Console output:

Enter an integer value or 0 to stop

1

Enter an integer value or 0 to stop

2

Enter an integer value or 0 to stop

3

Enter an integer value or 0 to stop

4

Enter an integer value or 0 to stop

5

Enter an integer value or 0 to stop

0

See OddEven.dat for evidence of output.

Source Code:

import java.util.Scanner;
import java.io.*;
/**
 * Application OddEven takes in a given number
 */
public class OddEven
{
 public static Scanner inData;
 public static PrintWriter outFile;
 public static void main(String[] args) throws IOException
 {
 int value;
 int oddCount = 0;
 int evenCount = 0;
 inData = new Scanner(System.in);
 //ask for input
 System.out.println("Enter an integer value or 0 to stop");
 value = inData.nextInt();//assign the input to "value"
 while (value !=0)//while value does not equal 0
 {
 if(value % 2 == 1){//if the value is divisble by 2
 evenCount++;//add to even count
 }else{//otherwise
 oddCount++;//add to the odd cont
 }
 //ask for further input
 System.out.println("Enter an integer value or 0 to stop");
 value = inData.nextInt();//assign the input to "value"
 }
 //instantiate a new PrintWriter object containing a FileWriter object
 outFile = new PrintWriter(new FileWriter("OddEven.dat"));
 //output to the outFile the results
 outFile.println("There were " + evenCount + " even numbers.");
 outFile.println("There were " + oddCount + " odd numbers.");
 outFile.close();//release the outFile
 }
}

[image: image4.jpg](8

Laboratory 6

Lesson 6-4: File Input and Output

Name __ Date _______________________

Section___

Exercises 1 through 5 use application shell ReadData.

import java.io.*;

import java.util.Scanner;

public class ReadData

{

public static void main(String[] args)

throws IOException

{

/* TO BE FILLED IN: Exercise 1 */

/* TO BE FILLED IN: Exercise 2 */

int count = 0;

int value;

int sum = 0;

while (/* TO BE FILLED IN: Exercise 3 */)

{

value = /* TO BE FILLED IN: Exercise 4 */

sum = sum + value;

count++;

}

/* TO BE FILLED IN: Exercise 5 */

/* TO BE FILLED IN: Exercise 6 */

}

}

Exercise 1: Declare an input file firstIn and an output file firstOut.

 Scanner firstIn = new Scanner(new FileReader("inData"));

 PrintWriter firstOut = new PrintWriter(new FileWriter("outData");

Exercise 2: Instantiate your files. The input data is on file inData; the output file should go on file outData.

 Scanner firstin = new Scanner(new FileReader("inData"));

 PrintWriter firstOut = new PrintWriter(new FileWriter("outData"));

Exercise 3: Fill in the while expression so that the loop continues as long as there is another value to be read.

 while (firstIn.hasNextInt())

Exercise 4: Read an integer value from file firstIn.

 value = firstIn.nextInt();

Exercise 5: Write a statement that writes the sum of the values on file outData.

 firstOut.println("" + sum);

[image: image5.jpg]Loops and Files 9)

Exercise 6: Close the files.

 firstIn.close();

 firstOut.close();

Exercise 7: Run your program and show what is written on file outData.

Source:

import java.io.*;
import java.util.Scanner;
public class ReadData
{
 public static void main(String[] args)
 throws IOException
 {
 //Declare and instantiate the input and output for this application
 Scanner firstIn = new Scanner(new FileReader("inData"));//input
 PrintWriter firstOut = new PrintWriter(new FileWriter("outData"));//output
 int count = 0;//not sure why this is here, redundant code
 int value;//variable to store input
 int sum = 0;//summary of input
 while (firstIn.hasNextInt())//while inData has integers left
 {
 value = firstIn.nextInt();//gather those integers
 sum = sum + value;//add those integers together
 count++;//increase the count (once again, redundant code)
 }
 //Output the summary of the values
 firstOut.println("" + sum);
 //close the FileReader and PrintWriter objects.
 firstIn.close();
 firstOut.close();
 }
}
Output (see outData for an example):

719

[image: image6.jpg](10 | Laboratory 6

Lesson 6-5: Nested Logic

Name __ Date _______________________

Section ___

// Application IOLoopA counts the number of blanks per line

// and estimates the number of words.

import java.io.*;

import java.util.Scanner;

public class IOLoopA

{

public static Scanner inFile;

public static PrintWriter outFile;

public static int getBlanks(String inputString)

{

// getBlanks returns the number of blanks in inputString

int blankCount = 0;

int index = inputString.indexOf(' ');

while (index != -1)

{

blankCount++;

if (inputString.length() != 1)

{

inputString = inputString.substring(index+1,

inputString.length());

index = inputString.indexOf(' ');

}

else

index = -1;

}

return blankCount;

}

public static void main(String[] args) throws IOException

{

int lineCount = 0;

int blankCount;

String inputString;

inFile = new Scanner(new FileReader("history.dat"));

outFile = new PrintWriter(new FileWriter("data.out"));

while (inFile.hasNextLine())

{

inputString = inFile.nextLine();

lineCount++;

blankCount = getBlanks(inputString);

outFile.println("Line " + lineCount + " contains "

+ blankCount + " blanks.");

}

outFile.close();

inFile.close();

}

}

[image: image7.jpg]Loops and Files 11)

Exercise 1: Run application IOLoopA. What was the last line written on file data.out?

> run IOLoopA

java.io.FileNotFoundException: history.dat (The system cannot find the file specified)

at java.io.FileInputStream.open(Native Method)

at java.io.FileInputStream.<init>(Unknown Source)

at java.io.FileInputStream.<init>(Unknown Source)

at java.io.FileReader.<init>(Unknown Source)

at IOLoopA.main(IOLoopA.java:35)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)

at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)

at java.lang.reflect.Method.invoke(Unknown Source)

at edu.rice.cs.drjava.model.compiler.JavacCompiler.runCommand(JavacCompiler.java:271)

After checking the directory, I found that there is indeed no file named history.dat. However, there is a file named history.d1. I made a copy of history.d1 and renamed it history.dat then re-ran the application. The last line written in data.out is:

Line 84 contains 2 blanks.

Exercise 2: Application IOLoopA is an alternate version of IOLoop in the Review Section of this laboratory. Look carefully at the structure of the code in IOLoopA and then go back and look at the original.

Describe the differences in the code structure.

IOLoop is a self-contained class without sub methods to help run the overall application. Whereas, IOLoopA is a calss that contains a main method and sub methods in order to identify and contain each programmatic action.

Which is easier to understand? Please explain.

In one sense, the way IOLoop is setup helps to alleviate excess code, but on the other makes the global actions harder to understand. In a larger application, this would lead to an excessive amount of looping and a loss of where the code sits during any cycle. As such, the way IOLoopA is written is easier to understand in a larger application.

Exercise 3: The number of blanks plus the number of lines comes close to estimating the number of words in a text file. Alter the code so that the approximation to the number of words in the file is written at the end of the output. You may alter whichever original version is easier for you to understand. Compile and rerun the program. Now what is written on file data.out?

Source:

// Application IOLoopA counts the number of blanks per line
// and estimates the number of words.
import java.io.*;
import java.util.Scanner;
public class IOLoopA{
 public static Scanner inFile;
 public static PrintWriter outFile;
 public static int getBlanks(String inputString){
 // Method getBlanks returns the number of blanks
 // in parameter inputString
 int blankCount = 0;//initialize the blankCount
 //set the index variable to the location of the blank in inputString
 int index = inputString.indexOf(' ');
 while (index != -1){//while their are still blanks
 blankCount++;//add to the blankCount
 //if there are still more words
 if (inputString.length() != 1){
 //decrease the input string by 1 space
 inputString = inputString.substring(index+1, inputString.length());
 //reset the index variable
 index = inputString.indexOf(' ');
 }else{
 //if there are no more words, end the loop
 index = -1;
 }
 }
 return blankCount;//return the number of blanks
 }//End getBlanks() method
 public static void main(String[] args) throws IOException{
 int lineCount = 0;//intialize the number of lines in the file
 int blankCount = 0;//intialize the number of blanks in the file
 int wordCount;//a variable to hold the number of words in the file
 int blankCounter = 0;//intialze the sum of blanks in the whole file
 String inputString;//variable to store input
 //instantiate the scanner object inFile
 inFile = new Scanner(new FileReader("history.dat"));
 //instantiate the PrintWriter object outFile
 outFile = new PrintWriter(new FileWriter("data.out"));
 //while there are still more lines left in the file
 while (inFile.hasNextLine()){
 inputString = inFile.nextLine();//gather those lines
 lineCount++;//add to the line count
 blankCount = getBlanks(inputString);//fine the number of blanks
 //on the current line.
 //output the results to the file and to console.
 outFile.println("Line " + lineCount + " contains "
 + blankCount + " blanks.");
 System.out.println("Line " + lineCount + " contains "
 + blankCount + " blanks.");
 //add to the total blankCounter for the file
 blankCounter = blankCounter + blankCount;
 }
 //Sum the number of words in the document
 wordCount = blankCounter + lineCount;
 //output the results to the file and to console.
 outFile.println("There are " + wordCount + " words in this file.");
 System.out.println("There are " + wordCount + " words in this file.");
 //release the input and output streams.
 outFile.close();
 inFile.close();
 }//End Main
}//END CLASS

Output of last two lines:

Line 84 contains 2 blanks.

There are 679 words in this file.

[image: image8.jpg](12 | Laboratory 6

Lesson 6-6: Debugging

Name __ Date _______________________

Section ___

Exercise 1: Program SumNums reads and counts nonnegative integers until there are no more data values. You run the application using file SumNums.d1, and the program says that it can’t find the file. Locate the bug and describe it.

Actually, the above description is wrong, it cannot find the File SumNum.d1 which is what it is trying to compile and run. By changing the name to SumNums.d1 the issue is resolved.

Exercise 2: The program now runs, but it gives the wrong answer. Locate and describe this bug.

The error is with:

 count = count + number;

this is storing the value of whatever number is taken via input and summing it with count.

It should rather be:

 count++

Exercise 3: The answer is different but still wrong! Keep looking. Describe the error.

The initialization of count is set to 0, therefore it is going to return a value count starting at 0. To fix this we change
int count = 0;

to

int count = 1;

Source:

// Program SumNums reads and counts nonnegative integers until
// the end of file is reached on file SumNums.D1
import java.io.*;
import java.util.Scanner;
public class SumNums
{
 public static Scanner inFile;
 public static void main(String[] args) throws IOException
 {
 inFile = new Scanner(new FileReader("SumNums.d1"));
 int number; // input value
 int count; // number of positive values
 number = inFile.nextInt();
 count = 1;
 while (number != 0)
 {
 number = inFile.nextInt();
 if (number > 0)
 count++;
 }
 System.out.println("The number of nonnegative integers is "
 + count);
 }
}
