[image: image1.jpg]Numeric Types 5 )





Lesson 4-2: Arithmetic Operations

Name: Jered McClure___________________________ Date: 7 Nov 2011________________

Section: ITEC-1030-1______________________________ 

Use application Convert for Exercises 1 through 5. Study this application carefully. It converts a temperature from Fahrenheit to Celsius and a temperature from Celsius to Fahrenheit. 

// Application Convert converts a temperature in Fahrenheit to 

// Celsius and a temperature in Celsius to Fahrenheit

import java.util.Scanner;

public class Convert

{


public static void main(String[] args) 


{



Scanner inData = new Scanner(System.in);



int fToC;// Place to store Celsius answer



int cToF;// Place to store the Fahrenheit answer 



System.out.println("Enter a value to be converted " 




+ "from Fahrenheit to Celsius.");



fToC = inData.nextInt();



System.out.println(fToC + " in Fahrenheit is " 




+ (5 * (fToC - 32)/9) + " in Celsius. "); 


}

}

Exercise 1: Compile and run application Convert. What value did you input and what is written out for fToC? 

Enter a value to be converted from Fahrenheit to Celsius.

98

98 in Fahrenheit is 36 in Celsius. 

Exercise 2: Notice that the application declares two values (cToF and fToC) but only inputs, calculates, and prints one value fToC. Add the statements to calculate and print cToF. The formula is 9 times the temperature in Celsius divided by 5 plus 32. Compile and run the application. 

What values did you input and what values were written? 

The more I tried to not fix this class, the more I wanted to cry. As such, I had to fix the conversion formulas as well as create a class that was actually useful. I have tried to document the below to the best of my ability. Source code starts on the next page.
                            //0. Class Convert

//========================================================================================

import java.util.Scanner;                  //import the scanner object for input

/** 

 * Application Convert converts a temperature in Fahrenheit to 

 * Celsius and a temperature in Celsius to Fahrenheit

 */

public class Convert                       //Start Class Convert()

{

  //Declare, assign, and instantiate scanner object "inData"

  static Scanner inData = new Scanner(System.in);

  static boolean go = true;                //control switch for class

                            //1. Main

//========================================================================================

  public static void main(String[] args)   //Start main

  {    

    while(go){                             //while the control is true

      menuTemp();                          //Run the program (menuTemp() )

    }                                      //end of go loop

  }                                        //End main

                            //2. Is Integer

//========================================================================================

  /**

   * isInteger(): Takes a given string and determines whether it can be

   * parsed into type Integer. If it can, the method returns true,

   * otherwise, the method returns false.

   * @param str

   */

  public static boolean isInteger(String str){//Start method isInteger()

    try{                                    //Start tryCatch

      int isInt = Integer.parseInt(str);    //try to parse the String into an int

                                            //isInt is a throw away variable.

      return true;                          //if the string is an integer, return true

    }catch(NumberFormatException nFE){      //if the string is not an integer

      return false;                         //return false

    }                                       //end tryCatch

  }                                         //End method isInteger()

                            //3. Fahrenheit to Celcius

//========================================================================================

  /**

   * fToC(): Takes a given value and converts it from Fahrenheit

   * to Celcius. Note that the number is stored in type Float.

   */

  public static void fToC(){                 //Start fToC()

    float convert;                           //variable to store user input

    float converted;                         //variable to store converted value

    System.out.println("Enter Fahrenheit value: ");//ask for input

    convert = Float.parseFloat(inData.nextLine());//gather input, assign it to "convert"

    converted = (convert - 32F) * (5F/9F);   //convert the F value to C

    System.out.println("\n" + convert + " Fahrenheit is " 

                         + converted + " Celsius.");//inform the user of the value

  }                                          //End fToC()

                            //4. Celsius to Fahrenheit

//========================================================================================

  /**

   * cToF(): Takes a given value and converts it from Celsius

   * to Fahrenheit. Note that the number is stored in type Float.

   */

  public static void cToF(){                 //Start fToC()

    float convert;                           //variable to store user input

    float converted;                         //variable to store converted value

    System.out.println("Enter Celsius value: ");//ask for input

    convert = Float.parseFloat(inData.nextLine());//gather input, assign it to "convert"

    converted = (convert * (9F/5F)) + 32F;   //convert the C value to F
    System.out.println("\n" + convert + " Celsius is " 

                         + converted + " Fahrenheit.");//inform the user of the value

  }                                          //End cToF()

                            //5. Temperature Menu

//========================================================================================

  /**

   * menuTemp():Asks the user which temperature conversion they would like to do.

   * It then directs the program towards the requested temperature conversion.

   * 1 = F to C

   * 2 = C to F

   * If the user selects 3, the program will stop.

   * 3 = Program halt. (note that this does NOT lead to a System.exit)

   * All menus are in type Int with a tryCatch facilitating an incorrect user

   * input via the isInteger() method.

   */

  public static void menuTemp(){             //Start method menuTemp()

                                             //Ask the user for input

    System.out.println("Which temperature conversion would you like to do?");

    while(go){                               //begin a method loop using the class control "go"

      String input;                          //Variable to store user input via in type String

      int inputInt;                          //Variable to store the Int type of the user's input

      System.out.println("Type 1 for F to C");//If the user types 1, they will do F to C

      System.out.println("Type 2 for C to F");//If the user types 2, they will do C to F

      System.out.println("Type 3 to quit this program");//If the user types 3, the program halts.

      input = inData.nextLine();              //Gather user input and assign to variable "input"

      if(isInteger(input) == true){           //if the input can be parsed as an Integer

        inputInt = Integer.parseInt(input);   //do so (parse input as an integer)

        if(inputInt == 1){                    //If the input is 1

          fToC();                             //convert F to C

          break;                              //Break out of the method loop

        }else if(inputInt == 2){              //If the input is 2

          cToF();                             //convert C to F

          break;                              //Break out of the method loop

        }else if(inputInt == 3){              //If the input is 3

          System.out.println("Goodbye!");     //Tell the user goodbye.

          go = false;                         //Halt the program

        }else{                                //If the input is none of the above

          continue;                           //Restart the method loop asking for input.

        }

      }else if(isInteger(input) == false){    //If the input is NOT an integer

        System.out.println("\nPlease type a number.\n");//ask the user to type a number

        continue;                             //restart the method loop

      }else{                                  //Otherwise if the input cannot be defined.

        continue;                             //restart the method loop

      }                                       //end IfElse statement

    }                                         //end method control loop

  }                                           //End method menuTemp()

}                                             //End Class Convert()

                            //End Class

//========================================================================================

[image: image2.jpg](6

Laboratory 4





Exercise 3: Run your program four times using the following input values. Record the values for fToC and cToF for each set of values. 

Fahrenheit
Celsius
fToC
cToF

__________________________________________________________________

a. 212
100
100.00001 C
212.0 F
b. 100
50
37.77778 C
122.0 F
c. 122
37
50.000004 C
98.6 F 

d. 32
0
0.0 C
32.0 F (You choose.) 

Actual program output:

Which temperature conversion would you like to do?

Type 1 for F to C

Type 2 for C to F

Type 3 to quit this program

1

Enter Fahrenheit value: 

212

212.0 Fahrenheit is 100.00001 Celsius.

Which temperature conversion would you like to do?

Type 1 for F to C

Type 2 for C to F

Type 3 to quit this program

2

Enter Celsius value: 

100

100.0 Celsius is 212.0 Fahrenheit.

Which temperature conversion would you like to do?

Type 1 for F to C

Type 2 for C to F

Type 3 to quit this program

1

Enter Fahrenheit value: 

100

100.0 Fahrenheit is 37.77778 Celsius.

Which temperature conversion would you like to do?

Type 1 for F to C

Type 2 for C to F

Type 3 to quit this program

2

Enter Celsius value: 

50

50.0 Celsius is 122.0 Fahrenheit.

Which temperature conversion would you like to do?

Type 1 for F to C

Type 2 for C to F

Type 3 to quit this program

1

Enter Fahrenheit value: 

122

122.0 Fahrenheit is 50.000004 Celsius.

Which temperature conversion would you like to do?

Type 1 for F to C

Type 2 for C to F

Type 3 to quit this program

2

Enter Celsius value: 

37

37.0 Celsius is 98.6 Fahrenheit.

Which temperature conversion would you like to do?

Type 1 for F to C

Type 2 for C to F

Type 3 to quit this program

2

Enter Celsius value: 

0

0.0 Celsius is 32.0 Fahrenheit.

Which temperature conversion would you like to do?

Type 1 for F to C

Type 2 for C to F

Type 3 to quit this program

1

Enter Fahrenheit value: 

32

32.0 Fahrenheit is 0.0 Celsius.

Which temperature conversion would you like to do?

Type 1 for F to C

Type 2 for C to F

Type 3 to quit this program

3

Goodbye!

Exercise 4: Examine the output from Parts b and c. The results seem to be inconsistent. Describe the inconsistency and make a hypothesis to explain it. 

There is no inconsistency, the values are correct. However, from my initial foray into the class (before I began doing these exercise) I found that the integer values for Fahrenheit and Celsius where causing issues with the results. As such, I changed the types to Float. I also reworked the formulas as they were a bit off:

converted = (convert * (9F/5F)) + 32F;   //convert the C value to F

converted = (convert - 32F) * (5F/9F);   //convert the F value to C
Note that I explicitly name the numerical values within the formulas as type Float by adding an F at the end, e.g. 32F means 32 of type Float.

Exercise 5: Change the integer variables to type double and rerun the application with the same data you used in Parts b and c in Exercise 3. Do the results confirm your hypothesis? Explain.
I reran the program changing all Floats to type double, the values returned were of greater precision, but the value added to the precision was minimal. As such I returned the formulas to Float. However, listed below is the values as double (Note that I once again explicitly name the numerical values within the formulas as type Double by adding a D to the end):
                            //3. Fahrenheit to Celcius

//========================================================================================

  /**

   * fToC(): Takes a given value and converts it from Fahrenheit

   * to Celcius. Note that the number is stored in type Double.

   */

  public static void fToC(){                 //Start fToC()

    double convert;                           //variable to store user input

    double converted;                         //variable to store converted value

    System.out.println("Enter Fahrenheit value: ");//ask for input

    convert = Double.parseDouble(inData.nextLine());//gather input, assign it to "convert"

    converted = (convert - 32D) * (5D/9D);   //convert the F value to C

    System.out.println("\n" + convert + " Fahrenheit is " 

                         + converted + " Celsius.");//inform the user of the value

  }                                          //End fToC()

                            //4. Celsius to Fahrenheit

//========================================================================================

  /**

   * cToF(): Takes a given value and converts it from Celsius

   * to Fahrenheit. Note that the number is stored in type Double.

   */

  public static void cToF(){                 //Start fToC()

    double convert;                           //variable to store user input

    double converted;                         //variable to store converted value

    System.out.println("Enter Celsius value: ");//ask for input

    convert = Double.parseDouble(inData.nextLine());//gather input, assign it to "convert"

    converted = (convert * (9D/5D)) + 32D;   //convert the C value to F

    System.out.println("\n" + convert + " Celsius is " 

                         + converted + " Fahrenheit.");//inform the user of the value

  }                                          //End cToF()

Exercise 6: Remove the parentheses from both assignment statements and rerun the application using the values that you used in Part c in Exercise 3.

What values are printed? fToC 50.0 cToF 98.60000000000001
These values are not the same ones that were printed in Exercise 5. Why?

Because the values being computed are now doubles rather than floats. This adds an enormous level of precision. However, being that the computer operates on binary, there are miniscule errors which pop up when using floating point numbers. Hence the added 0000000000001 this is not a programming error, but rather a hardware error based on the way computers operate.
Use the following shell for Exercises 7, 8, and 9. 

// Application Methods demonstrates the use of library and 

// user-defined methods

public class Method

{


static double answer(double one, double two, double three)


{ 



// Do you recognize this formula?



return ((- two + Math.sqrt(Math.pow(two, ______) 




-(4.0 * one * three))) / (2.0 * one));


}


public static void main(String[] args)


{



System.out.println("" + answer(_______, _______, ______));


}

}

[image: image3.jpg]Numeric Types 7 )





Exercise 7: Fill in the blanks in method answer such that the value stored in parameter two is taken to the second power. Fill in the blanks in method main so that method answer is invoked with 10.0 as the first parameter, 20.0 as the second parameter, and 5.0 as the third parameter. What is printed? 

// Application MathMethods demonstrates the use of library and 

// user-defined methods

public class Method                                                //Start Class Method

{

  static double answer(double one, double two, double three)

  {                                                                //begin method answer()

    //Return the positive value of the quadratic formula

    //(-b + sqrt((b^2)-4*a*c))/2*a

    return ((- two + Math.sqrt(Math.pow(two, 2.0) 

        - (4.0 * one * three))) / (2.0 * one));

  }                                                                //end method answer()

  public static void main(String[] args)

  {                                                                //start main

    //print as string the positive value of x given the following parameters

    //ax^2+bx+c                     a     b     c

    System.out.println("" + answer(10.0, 20.0, 5.0));

  }                                                                //end main

}                                                                  //End Class Method()
Output:

> run Method

-0.2928932188134524

Formula as done by hand:

10.0x^2+20.0x+5.0

(-20.0+sqrt((20.0^2)-4*10.0*5.0))/(2.0*10.0)

20^2=400

4*10*5=200

400-200 = 200

-20 + sqrt(200)=-5.857864376269049511983112757903

2*10=20

-5.857864376269049511983112757903 / 20 =

-0.29289321881345247559915563789515 Accurate!
Exercise 8: Change the application in Exercise 1 so that method answer is invoked with 5.0 as the first parameter, 20.0 as the second parameter, and 10.0 as the third parameter. What is printed? 

// Application MathMethods demonstrates the use of library and 

// user-defined methods

public class Method                                                //Start Class Method

{

  static double answer(double one, double two, double three)

  {                                                                //begin method answer()

    //Return the positive value of the quadratic formula

    //(-b + sqrt((b^2)-4*a*c))/2*a

    return ((- two + Math.sqrt(Math.pow(two, 2.0) 

        - (4.0 * one * three))) / (2.0 * one));

  }                                                                //end method answer()

  public static void main(String[] args)

  {                                                                //start main

    //print as string the positive value of x given the following parameters

    //ax^2+bx+c                     a     b     c

    System.out.println("" + answer(5.0, 20.0, 10.0));

  }                                                                //end main

}                                                                  //End Class Method()
Output:

> run Method

-0.5857864376269049

Exercise 9: Change the application in Exercise 1 so that method answer is invoked with 5.0 as the first parameter, 10.0 as the second parameter, and 20.0 as the third parameter. What happens? Explain why. 

// Application MathMethods demonstrates the use of library and 

// user-defined methods

public class Method                                                //Start Class Method

{

  static double answer(double one, double two, double three)

  {                                                                //begin method answer()

    //Return the positive value of the quadratic formula

    //(-b + sqrt((b^2)-4*a*c))/2*a

    return ((- two + Math.sqrt(Math.pow(two, 2.0) 

        - (4.0 * one * three))) / (2.0 * one));

  }                                                                //end method answer()

  public static void main(String[] args)

  {                                                                //start main

    //print as string the positive value of x given the following parameters

    //ax^2+bx+c                     a     b     c

    System.out.println("" + answer(5.0, 10.0, 20.0));

  }                                                                //end main

}                                                                  //End Class Method()
Output:

> run Method

NaN

Done by hand:

5.0x^2+10.0x+20.0

(-10.0+sqrt((10.0^2)-4*5.0*20.0))/(2.0*5.0)

10^2=100

4*5*20=400

100-400=-300

sqrt(-300) = 

Invalid, one cannot find the square root of a negative number.
As such, the program is correct in its output.

[image: image4.jpg](8

Laboratory 4





Lesson 4-3: Class with Binary Operator Methods

Name: Jered McClure___________________________ Date: 7 Nov 2011________________

Section: ITEC-1030-1______________________________ 

Use the following class Distance for this lesson. 

// This class represents linear distance

public class Distance 

{


int feet;


int yards;


int miles;


// Constructors


public Distance()


{ 



feet = 0; 



yards = 0; 



miles = 0; 


}


public Distance(int inFeet, int inYards, int inMiles)


{ 



feet = inFeet; 



yards = inYards; 



miles = inMiles; 


}


public int getFeet() { return feet; }


public int getYards() { return yards; }


public int getMiles() { return miles; }

}

Exercise 1: The parameterized constructor does not check to see if the input arguments are normalized. That is, it does not check to see if the value for feet is between 0 and 3 (not inclusive) or the value for yards is between 0 and 1760 (not inclusive). Normalize these values and increment as necessary. (Hint: use / and %.) 
  /**

   * Distance(): Takes in given integer values and stores them as

   * feet, yards, and miles respectively. If a value greater than 

   * the normalized value is given, it is normalized and incremented

   * as necessary. If a value less than 0 is given, the value is stored

   * as 0.

   */

  public Distance(int inFeet, int inYards, int inMiles){//Begin param constructor

    miles = inMiles;                     //Default miles to the given param inMiles

    int ovrFlwFt = 0;                    //Variable to store the overflow of inFeet

    int ovrFlwYrds = 0;                  //Variable to store the overflow of inYards

    if(inFeet < 0){                      //If inFeet is less than zero

      feet = 0;                          //Set the value of Feet to zero

    }else if(inFeet > 3){                //If the value of feet is greater than three

      ovrFlwFt = inFeet / 3;             //divide the value by three and assign it to overflow

      feet = inFeet % 3;                 //Set the remainder of the quotient to feet.

    }else{                               //Otherwise, 

      feet = inFeet;                     //set feet to the given param inFeet

    }

    yards = inYards + ovrFlwFt;          //Default yards to the sum of the given param

                                         //inYards and the overflow of feet.

    if(yards < 0){                       //If yards is less than zero

      yards = 0;                         //set yards to zero

    }else if(yards > 1760){              //If yards is greater than 1760

      ovrFlwYrds = yards / 1760;         //Divide yards by 1760 and assign to overflow

      yards  = yards % 1760;             //Set the remainder of the quotient to yards.

    }

    if(miles < 0){                       //If miles is less than zero

      miles = 0;                         //Set miles to zero

    }else{                               //Otherwise,

      miles = miles + ovrFlwYrds;        //Set miles to the sum of miles and the overflow

                                         //of yards.

    }

  }                                      //End parameterized constructor.

Exercise 2: Add a method addDistance to class Distance that returns the result of adding two distances together. Be sure to normalize the result. 

  /**

   * addDistance(): Returns the result of adding two distances together.

   */

  public Distance addDistance(Distance dis){

    return new Distance(feet + dis.getFeet(), yards + dis.getYards(), miles + dis.getMiles());

  }

Exercise 3: Add a method toString that prints objects of class Distance. 

  /**

   * toString(): returns a string value for the given distance.

   * Feet: X, Yards: Y, Miles: Z

   */

  public String toString(){

    return "Feet: " + feet + ", Yards: " + yards + ", Miles: " + miles;

  }

Exercise 4: Write a test plan for class Distance. 

	Steps
	Expected Result
	Pass or Fail
	Comments

	Create an empty object of type Distance
	Object is created without fault
	 
	 

	Create an object of type distance with the values of 1, 1, 1
	Object is created without fault
	 
	 

	Create an object of type Distance with the values of -1, -1, -1
	Object is created without fault
	 
	 

	Create and\ object of type distance with the values of 0,0,0
	Object is created without fault
	 
	 

	Create an object of the type distance with the values 4, 1761, 0
	Object is created without fault
	 
	 

	Add the values of the second object with the values of the fifth object, store them in a sixth object
	Object is created without fault
	 
	 

	use the getter methods for object 1
	Returns all zeros
	 
	 

	Use the getter methods for object 2
	returns all ones
	 
	 

	Use the toString method for objects 3 through 6
	Returns the values in string format. For Object 6, the values of object 2 and object five will be the sum values.
	 
	 


Exercise 5: Implement your test plan. 

Using the DrJava Interaction pane:
> Distance distance1 = new Distance();

> Distance distance2 = new Distance(1,1,1);

> Distance distance3 = new Distance(-1,-1,-1);

> Distance distance4 = new Distance(0,0,0);

> Distance distance5 = new Distance(4,1761,0);

> Distance distance6 = distance2.addDistance(distance5);

> System.out.println("Feet: " + distance1.getFeet() + ". Yards: " + distance1.getYards() + ". Miles: " + distance1.getMiles);

Static Error: No field in Distance has name 'getMiles'

> System.out.println("Feet: " + distance1.getFeet() + ". Yards: " + distance1.getYards() + ". Miles: " + distance1.getMiles());

Feet: 0. Yards: 0. Miles: 0

> System.out.println("Feet: " + distance2.getFeet() + ". Yards: " + distance2.getYards() + ". Miles: " + distance2.getMiles());

Feet: 1. Yards: 1. Miles: 1

> System.out.println("Three: " + distance3.toString() + "\nFour: " + distance4.toString() + "\nFive: " + distance5.toString() + "\nSix: " + distance6.toString());

Three: Feet: 0, Yards: 0, Miles: 0

Four: Feet: 0, Yards: 0, Miles: 0

Five: Feet: 1, Yards: 2, Miles: 1

Six: Feet: 2, Yards: 3, Miles: 2
	Steps
	Expected Result
	Pass or Fail
	Comments

	Create an empty object of type Distance
	Object is created without fault
	 Pass
	 

	Create an object of type distance with the values of 1, 1, 1
	Object is created without fault
	 Pass
	 

	Create an object of type Distance with the values of -1, -1, -1
	Object is created without fault
	 Pass
	 

	Create and\ object of type distance with the values of 0,0,0
	Object is created without fault
	 Pass
	 

	Create an object of the type distance with the values 4, 1761, 0
	Object is created without fault
	 Pass
	 

	Add the values of the second object with the values of the fifth object, store them in a sixth object
	Object is created without fault
	 Pass
	 

	use the getter methods for object 1
	Returns all zeros
	 Pass
	I created a syntax error, but fixed on the next pass. 

	Use the getter methods for object 2
	returns all ones
	 Pass
	 

	Use the toString method for objects 3 through 6
	Returns the values in string format. For Object 6, the values of object 2 and object five will be the sum values.
	 Pass
	Sum is correct


Full source code for class Distance():

                              //0. Class Distance

//=======================================================================================

 /**

  * Class Distance(): Stores, normalizes, and returns linear distances.

  */

public class Distance{

  int feet;

  int yards;

  int miles;

                              //1. Constructors

//=======================================================================================

  //Default Constructor

  public Distance(){ 

    feet = 0; 

   yards = 0; 

   miles = 0; 

  }

  /**

   * Distance(): Parameterized Constructor, takes in given integer values 

   * and stores them as feet, yards, and miles respectively. If a value 

   * greater than the normalized value is given, it is normalized and 

   * incremented as necessary. If a value less than 0 is given, the value

   * is stored as 0.

   */

  public Distance(int inFeet, int inYards, int inMiles){//Begin param constructor

    miles = inMiles;                     //Default miles to the given param inMiles

    int ovrFlwFt = 0;                    //Variable to store the overflow of inFeet

    int ovrFlwYrds = 0;                  //Variable to store the overflow of inYards

    if(inFeet < 0){                      //If inFeet is less than zero

      feet = 0;                          //Set the value of Feet to zero

    }else if(inFeet > 3){                //If the value of feet is greater than three

      ovrFlwFt = inFeet / 3;             //divide the value by three and assign it to overflow

      feet = inFeet % 3;                 //Set the remainder of the quotient to feet.

    }else{                               //Otherwise, 

      feet = inFeet;                     //set feet to the given param inFeet

    }

    yards = inYards + ovrFlwFt;          //Default yards to the sum of the given param

                                         //inYards and the overflow of feet.

    if(yards < 0){                       //If yards is less than zero

      yards = 0;                         //set yards to zero

    }else if(yards > 1760){              //If yards is greater than 1760

      ovrFlwYrds = yards / 1760;         //Divide yards by 1760 and assign to overflow

      yards  = yards % 1760;             //Set the remainder of the quotient to yards.

    }

    if(miles < 0){                       //If miles is less than zero

      miles = 0;                         //Set miles to zero

    }else{                               //Otherwise,

      miles = miles + ovrFlwYrds;        //Set miles to the sum of miles and the overflow

                                         //of yards.

    }

  }                                      //End parameterized constructor.

//cont on next page

                              //2. Getter Methods

//=======================================================================================

  /**

   * getFeet(): Returns the value stored in Feet of class

   * Distance().

   */

  public int getFeet(){ 

    return feet;

  }

  /**

   * getYards(): Returns the value stored in Yards of class

   * Distance().

   */

  public int getYards(){ 

    return yards; 

  }

  /**

   * getMiles(): Returns the value stored in Miles of class

   * Distance()

   */

  public int getMiles(){ 

    return miles; 

  }

  /**

   * toString(): returns a string value for the given distance.

   * Feet: X, Yards: Y, Miles: Z

   */

  public String toString(){

    return "Feet: " + feet + ", Yards: " + yards + ", Miles: " + miles;

  }

                              //3. Operation Methods

//=======================================================================================

  /**

   * addDistance(): Returns the result of adding two distances together.

   */

  public Distance addDistance(Distance dis){

    return new Distance(feet + dis.getFeet(), yards + dis.getYards(), miles + dis.getMiles());

  }

}

[image: image5.jpg]Numeric Types 9 )





Lesson 4-4: Reading in Numeric Values

Use the following application shell for this lesson. 

import java.util.Scanner;

public class InputExample

{


static String string1 = " ";


static String string2 = " ";


static int intValue1 = 0;


static int intValue2 = 0;


static float floatValue1 = 0.0f;


static float floatValue2 = 0.0f;


public static void main(String args[])


{



// put your statements here



System.out.println(string1);



System.out.println(string2);



System.out.println(intValue1);



System.out.println(intValue2);



System.out.println(floatValue1);



System.out.println(floatValue2);


}

}

Exercise 1: Set up a Scanner object to be used for reading. Set the String object that is input to the Scanner as a constant. 

    String someString;//string to store data in
    Scanner someInput = new Scanner(someString);//scan the string into the system.
Exercise 2: Given the following data 

44 56.89 Hello 55

insert the Java statement(s) that reads 44 into intValue1, 56.89 into floatValue1, "Hello" into sting1, and 55 into floatValue2. What is printed? 

Code:

    String someString = "44 56.89 Hello 55";

    Scanner someInput = new Scanner(someString);

    intValue1 = someInput.nextInt();

    floatValue1 = someInput.nextFloat();

    string1 = someInput.next().trim();

    floatValue2 = someInput.nextFloat();

Output:

Hello

44

0

56.89

55.0

[image: image6.jpg]( 10 | Laboratory 4





Exercise 3: Given the following data 

44 56.89 Hello 55

insert the Java statement(s) that reads 44 into floatValue1, 56.89 into floatValue2, and "Hello 55" into string1. What is printed? (Did you get rid of the leading blank in string1?) 

Code:

    String someString = "44 56.89 Hello 55";

    Scanner someInput = new Scanner(someString);

    floatValue1 = someInput.nextFloat();

    floatValue2 = someInput.nextFloat();

    string1 = someInput.next();

    string1 = string1 + string2 + someInput.next();
Output:

Hello 55

0

0

44.0

56.89

Exercise 4: Given the following data 

44

56.89

Hello

55

insert the Java statement(s) that reads 44 into intValue1, 56.89 into floatValue1, "Hello" into string1, 55 into intValue2, and the empty string into string2. Hint: include \n in your input string to show the new line. 

Code:

    String someString = "44\n56.89\nHello\n55";

    Scanner someInput = new Scanner(someString);

   intValue1 = someInput.nextInt();

    floatValue1 = someInput.nextFloat();

    string1 = someInput.next();

    intValue2 = someInput.nextInt();

Output:
Hello

44

55

56.89

0.0

Exercise 5: Given the following data 

55.5 Good Bye 21

insert the Java statement(s) that stores 55.5 into string1, "Good Bye" into string2, and 21 into intValue1. (Be careful: this is more complicated.) 

Code:

    String someString = "55.5 Good Bye 21";

    Scanner someInput = new Scanner(someString);

    string1 = someInput.next().trim();

    string2 = someInput.next().trim();

    string2 = string2 + " " + someInput.next().trim();

    intValue1 = someInput.nextInt();
Output:

55.5

Good Bye

21

0

0.0

0.0

[image: image7.jpg]Numeric Types M )





Lesson 4-5: String Methods

Name: Jered McClure___________________________ Date: 7 Nov 2011________________

Section: ITEC-1030-1______________________________ 

Use the following application shell for this lesson. 

public class StringExample

{


public static void main(String args[])


{



final String FIRST = "Humpty Dumpty sat on a wall.";



final String SECOND = "Humpty Dumpty had a great fall.";



final String THIRD = "All the king's horses ";



final String FOURTH = "and all the king's men ";



final String FIFTH = "couldn't put Humpty Dumpty " +











" together again.";



// Fill in answers here


}

}

Exercise 1: Write a statement that prints the number of characters in the entire rhyme.

    //Concatenate the list of strings with appropriate grammar.
    String concat = FIRST + " " + SECOND + " " + THIRD + "and" + FOURTH + FIFTH;

    //Assign the length of the concatenation to variable “length”

    int length = concat.length();

    //Output the results

    System.out.println("Humpty Dumpty: " + concat + "\nNumber of characters in poem: " + length);

Exercise 2: Write the statement that prints the third character in THIRD.

    //Assign the third character in THIRD to the variable "letter"

    char letter = THIRD.charAt(4);

    //Output letter

    System.out.println("The third character in the named constant THIRD, is: " + letter);

Exercise 3: Write the statement that prints the index of “great” in SECOND.

    //Assign the index of "great" to the variable index from SECOND

    int index = SECOND.indexOf("great");

    //Output index

    System.out.println("The index of \"great\" in the named constant SECOND, is: " + index);

Exercise 4: Write the statement that prints a ten-character substring of FIRST, beginning with the 8th character.
    //Set a 10 char substring of FIRST to the variable subString

    String subString = FIRST.substring(8,18);

    //Ensure that the length of the substring is 10

    int subLength = subString.length();

    //Output the length and the substring

    System.out.println("The " + subLength + " character substring of FIRST is: " + subString)

Exercise 5: Write the statement that prints FOURTH trimmed.
    //Output the FOURTH constant trimmed

    System.out.println("The Fourth constant trimmed is: " + FOURTH.trim());

Exercise 6: Write the statement that creates a field newFifth that is FIFTH with the double blank removed. Print newFifth.
    //Assign the grammatically correct FIFTH string to newFifth

    String newFifth = FIFTH.substring(0,27) + FIFTH.substring(28,43);

    //Output newFifth

    System.out.println("newFith: " + newFifth);

Full Source Code:

//This class takes the children's rhyme Humpty Dumpty and runs

//String methods against it.

public class StringExample{

  public static void main(String args[]){    

    //Final named constants

    final String FIRST = "Humpty Dumpty sat on a wall.";

    final String SECOND = "Humpty Dumpty had a great fall.";

    final String THIRD = "All the king's horses, ";

    final String FOURTH = " all the king's men, ";

    final String FIFTH = "couldn't put Humpty Dumpty " +

                       " together again.";

    // Fill in answers here    

    //Assign the grammatically correct FIFTH string to newFifth

    String newFifth = FIFTH.substring(0,27) + FIFTH.substring(28,43);

    //Concatenate the list of strings with appropriate grammar

    String concat = FIRST + " " + SECOND + " " + THIRD + "and" + FOURTH + newFifth;

    //Assign the length of the concatenation to variable "length"

    int length = concat.length();

    //Output the results

    System.out.println("Humpty Dumpty: " + concat + "\nNumber of characters in poem: " + length);

    //Assign the third character in THIRD to the variable "letter"

    char letter = THIRD.charAt(4);

    //Output letter

    System.out.println("The third character in the named constant THIRD, is: " + letter);

    //Assign the index of "great" to the variable index from SECOND

    int index = SECOND.indexOf("great");

    //Output index

    System.out.println("The index of \"great\" in the named constant SECOND, is: " + index);

    //Set a 10 char substring of FIRST to the variable subString

    String subString = FIRST.substring(8,18);

    //Ensure that the length of the substring is 10

    int subLength = subString.length();

    //Output the length and the substring

    System.out.println("The " + subLength + " character substring of FIRST is: " + subString); 

    //Output the FOURTH constant trimmed

    System.out.println("The Fourth constant trimmed is: " + FOURTH.trim());

    //Output newFifth

    System.out.println("newFith: " + newFifth);

  }

}

[image: image8.jpg]( 12 | Laboratory 4





Lesson 4-6: Debugging a Class

Name: Jered McClure___________________________ Date: 7 Nov 2011________________

Section: ITEC-1030-1______________________________ 

Exercise 1: Application Typos contains syntax errors. Correct the code, describe the errors, and show what is printed. 

List the syntax errors. 

· Syntax error on line 17: Addition operators not found, as such, String cannot concatenate.
· System.out.println("ONE "  "TWO "  "THREE ");
· Syntax error on line 19: line never ends a semi-colon is not present.
· average = sum % 3

Fixed code:

// Application Typos prints three integer numbers, sums the numbers, calculates

// the average, and prints the sum and the average of the three numbers

public class Typos

{

  public static void main(String[] args)

  {

    final int ONE = 5;

    final int TWO = 6;

    final int THREE = 7;

    int sum;

    float average;

    System.out.println("ONE " + "TWO " + "THREE ");

    sum = ONE + TWO + THREE;

    average = sum % 3;

    System.out.println(" The sum is "  + average  + " and the average is "

   + sum);

  }

}
Show what is printed. 

ONE TWO THREE 

 The sum is 0.0 and the average is 18

Exercise 2: The output from application Typos looks strange! Clearly, there are logic bugs lurking in the code. Find and correct these errors. 

List the logic errors. 

· Logic Error on line 19: variable operation is remainder using an implicit declaration, meant to be quotient using explicit float declaration.

· average = sum % 3;
· Logic Error on lines 20-21: String concatenation has misplaced variables; average and sum need to be swapped.

· System.out.println(" The sum is "  + average  + " and the average is "

·    + sum);
Fixed code:

// Application Typos prints three integer numbers, sums the numbers, calculates

// the average, and prints the sum and the average of the three numbers

public class Typos

{

  public static void main(String[] args)

  {

    //Constants to store numerical data

    final int ONE = 5;

    final int TWO = 6;

    final int THREE = 7;

    //Variables to store equation outcomes

    int sum;

    float average;

    //Print out a title

    System.out.println("ONE " + "TWO " + "THREE ");

    //Add the constants together and assign to variable "sum"

    sum = ONE + TWO + THREE;

    //Find the average of the constants and assign to variable "average"

    average = (float)sum / 3F;

    //Output results

    System.out.println(" The sum is "  + sum  + " and the average is "

   + average);

  }

}
Show what is printed. 

ONE TWO THREE 

 The sum is 18 and the average is 6.0

[image: image9.jpg]Numeric Types 13 )





Exercise 3: Application Ounces converts a value in ounces to cups, quarts, and gallons. Compile and run this code. Be forewarned: A few bugs are lurking in the code. The elements (definitions, statements, and symbols) of the code are numbered on the left in comments. Fill in the following chart, listing the syntax errors and showing what you did to correct them. 

	# 
	OK
	Error
	Corrections (if error)

	1 
	Good
	
	

	2 
	Good
	
	

	3 
	Good
	
	

	4 
	Good
	
	

	5 
	Good
	
	

	6 
	Good
	
	

	7 
	Good
	
	

	8 
	Good
	
	

	9 
	Good
	
	

	10 
	Good
	
	

	[image: image10.jpg]



	Good
	
	

	12 
	Good
	
	

	13 
	
	SYNTAX
	Line never ends, added a semicolon

	14 
	Good
	
	

	15 
	Good
	
	

	16 
	Good
	
	

	17 
	
	SYNTAX
	Ending bracket not found, added bracket


[image: image11.jpg]( 14 | Laboratory 4





Exercise 4: Now that program Ounces compiles and runs, you must check the output for logic errors. List the logic errors that you find and indicate what you did to correct them. Run your corrected code. 

	13 
	
	LOGIC
	128 ounces in a gallon not 64, changed to 128

	14 
	
	LOGIC
	Formulas incorrect for converting to cups and ounces
Changed: (OUNCES % 128) % 8

To: (OUNCES % 128) / 8 
(I originally thought the above was 32 not 128 but after looking over the compiled output I realized quartz was not listed on this line.)

Changed: (OUNCES / 128) %8

To: (OUNCES % 128)%8


Exercise 5: Did you double-check the answers to be sure they were reasonable? Compare your solution to application Ounces2. Did you find all the logic errors? 

At first I mistook that there were extra cups for the final output due to the fact that quartz was not listed. If quartz had been listed the equations for the final line would have been different.

Final Output:

run Ounces

9946 ounces is 1243 cups and 2 ounces.

9946 ounces is 310 quarts and 3 cups 2 ounces.

9946 ounces is 77 gallons 11 cups 2 ounces.

