Indexes, Views, and Stored Procedures 1

[bookmark: _GoBack]Running Head: INDEXES, VIEWS, AND STORED PROCEDURES

SQL Queries: Indexes, Views, and Stored Procedures
Jered McClure
Walden University

SQL Queries: Indexes, Views, and Stored Procedures
1. Create an index on the job column of the employee table.
[image:]
2. Create an index on the combination of department identification number and basic salary columns of the employee table.
[image:]
3. Create a view Emp_vw containing the employee number, the employee name, the department number, and the department name. Ensure that the view allows users only to view, and not to update, the data.
[image:]

4. Create a view emp_dept_view containing the employee name and department name columns from the employee and department table.
[image:]
5. Create a function that returns the day of the week for a specified date.
[image:]

6. Create a procedure that accepts a department number, computes the total basic salaries for that department, and displays both the department number and the total basic salaries.
[image:]
7. Create a procedure that accepts an employee number and a job. In the procedure, determine if the employee has the specified job or not. If the employee has the job, display the employee's ID number. If the employee does not have that job, display the employee's name and his or her actual job title.
[image:]
8. Create a trigger to store a copy of any record deleted from the employee table into a table called Emp_temp. Assume that the Emp_temp table has the same structure as the employee table.
[image:]
9. Create a trigger that displays the message "Emp table updated" when an update to the employee table increases the employee's basic salary.
[image:]
Reference
Coronel, C., Morris, S., & Rob, P. (2012). Database Systems: Design, Implementation, and Management (10th ed.). Boston, MA, USA: Cengage Learning.

image2.png
mmand Line

SQL> CREATE INDEX IDX_DPSAL ON EMPLOYEESCDEPARTMENI_ID,SALARY);

Index created.

image3.png
SQL> CREATE UIEW EMP_UU AS
SELECT EMP_EMPLOYEE_ID,

EMPEMPLOYEE NAFE,
EMPDEPARTHENT_ID_
DEP_ DEPARTHENT_NAHIE

FROM EMPLOYEES EMP

INNER JOIN

DEPARTMENTS DEP
ON EMP.DEPARTMENT _ID = DEP.DEPARTMENT_ID

PNENPIPRN

18 ORDER BY 1;

Uiew created.

image4.png
CREATE UIEW _EMP_DEPT_UIEW AS
SELECT EMPLOYEE_RAME,
DEPARTHENT_NAFE

image5.png
SQL> CREATE FUNCTION DAY_OF_WEEKCDOW IN
%" FETURN UARGHARZ
RETURN_DAY UARCHAR2(3);3
BEGIN
SELECT TO_CHARCDOW.’DY¥*>
INTO RETURN_DAY
FROM DUAL;
RETURNCRETURN_DAY> 3
16 END;
i s

Function created.

ISQL> SELECT DAY_OF_WEEK(SYSDATE> FROM DUAL;
IDAY_OF_WEEK(SYSDATE>

image6.png
2" SP_CURS OUT SYS_REFCURSOR> AS
3 BEGIN
OPEN SP_CURS FOR
SELECT DEPARTMENT_ID,

SUMCSALARY>
FROM_EMPLOYEES
WHERE DEPARTMENT ID = DEP_ID
GROUP BY DEPARTMENT_ID:
}f END sp_DEP_BASIC_SAL;
’

Procedure created.

'SQL> UARIABLE x REFCURSO)
ISQL> EXECUTE sp Dep Basic $al(38, 103

PL/SQL procedure successfully completed.
ISQL> PRINT x;
IDEPARTMENT _ID SUMCSALARY>

image7.png
§P_JB_CURS ouT §¥8_REFCURSOR>

Brarn
OPEN SP_JOB_CURS FOR
SELECT CASE WHEN JOB_CLASS IN
<SELECT JOB_ID
FROM_ EMPLOYEES
WHERE EMP_NUMBER - EMPLOYEE_ID)
THEN 1T ENP_NUMBER
(SELECT EMPLOYEE_NAME i * * ii JOB_DESCRIPTION
FROM EMPLOYEES
UHERE EMP_NUMBER = EMPLOYEE_ID) END AS JOB
FROM DUAL;
18 END EMP_JOB;
19/

L

ISOL> UARIABLE X REFCURSOR;
'SQL> EXECUTE EMP_JOBCI,’Ji’,:%)3

PL/SQL procedure successfully completed.
IsQL> PRINT ¥;

image8.png
SQL> CREATE OR REPLACE TRIGGER EMP_DEL
AFTER DELETE ON EMPLOYEES
FOR EACH ROW
BEGIN
INSERT INTO EMP_TEMP
ey (EHPLOYEE.[D. EMFLOYEE NAME. JOB_LD. JOB_DESCRIPTION. HOD, HIREDATE, SALaRY . D
SELECT
-OLD.EMPLOYEE_ID.

FROM DUAL;
END;
’

Fl
3
1
5
6
R
7
8
9

16

i1

12

13

11

15

16

17

18

trigger created.

SaL> DELETE FROM EMPLOYEES VHERE EMPLOYEE_ID = 11;

i vou deleted.

SL> SELECT » FROM EMP_TENP;

[EMPLOYEE_1D ENPLOYEE_NANE J0 JOB_DESCRIPTION HOD HIREDATE
SALARY DEPARTMENT_ID B

11 Jered J3 MANAGER 01/JAN/13
3000 20

isaL> _

image9.png
SQL> CREATE OR REPLACE TRIGGER EMP_SAL
AFTER UPDATE OF SALARY ON EMPLOYEES
FOR EACH ROW
WHENCNEW . SALARY > OLD.SALARY)
BEGIN
DBMS_OUTPUT.PUT_LINEC Enp table updated’);
END EMP_SAL}
’

Trigger created.

lsaL>

image1.png
mmand Line

[SQL> CREATE INDEX IDX_JOB ON EMPLOVEESCJOB_ID>;

Index created.

